WELCOME

Ahead of the presentation we would like you to connect to the internet and ensure you are able to open Menti.com

Instructions for connecting to internet:
WiFi: Sheraton_CONFERENCE
Password: None required
Catalyzing product development of vaccine technology innovations:
Vaccine Innovation Prioritisation Strategy

Marion Menozzi-Arnaud, Gavi
Debra Kristensen, PATH
Birgitte Giersing, WHO

October 2019
Catalyzing product development of vaccine technology innovations: Vaccine Innovation Prioritisation Strategy

Agenda

<table>
<thead>
<tr>
<th>Topic</th>
<th>Presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>• The Alliance VIPS initiative</td>
<td>Marion Menozzi, Gavi</td>
</tr>
<tr>
<td>• Nine prioritised innovations from the VIPS initial prioritisation phase</td>
<td>Debra Kristensen, PATH</td>
</tr>
<tr>
<td>• Process for the final prioritisation phase</td>
<td>Birgitte Giersing, WHO</td>
</tr>
<tr>
<td>• Q&A</td>
<td>Dr. Sotiris Missailidis</td>
</tr>
<tr>
<td>• Panel discussion - ‘How VIPS may help drive vaccine delivery innovations but what else is needed beyond the prioritisation and communication?’</td>
<td>Dominic Hein, Gavi</td>
</tr>
<tr>
<td>• Q&A</td>
<td>Dr. Sotiris Missailidis</td>
</tr>
</tbody>
</table>
Catalyzing product development of vaccine technology innovations: Vaccine Innovation Prioritisation Strategy

Agenda

<table>
<thead>
<tr>
<th>Topic</th>
<th>Presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Alliance VIPS initiative</td>
<td>Marion Menozzi, Gavi</td>
</tr>
<tr>
<td>• Nine prioritised innovations from the VIPS initial prioritisation phase</td>
<td>Debra Kristensen, PATH</td>
</tr>
<tr>
<td>• Process for the final prioritisation phase</td>
<td>Birgitte Giersing, WHO</td>
</tr>
<tr>
<td>• Q&A</td>
<td>Dr. Sotiris Missailidis</td>
</tr>
<tr>
<td>• Panel discussion - ‘How VIPS may help drive vaccine delivery innovations but what else is needed beyond the prioritisation and communication?’</td>
<td>Dominic Hein, Gavi</td>
</tr>
<tr>
<td>• Q&A</td>
<td>Dr. Sotiris Missailidis</td>
</tr>
</tbody>
</table>
Why is VIPS needed?

Innovative delivery approaches will be needed to help achieve the Alliance coverage and equity targets.

The next decade will likely need to shift to sub-national use of differentiated products.

Many innovation initiatives across the Alliance, but strategy and effort not fully aligned or coordinated.
VIPS background and goal

2016 – 2020: Innovation as one of the Alliance priorities for shaping markets

The Alliance aims to pursue a common agenda of driving vaccine product innovation to better meet country needs and support Alliance goals

Prioritise innovations in vaccine delivery attributes to provide greater clarity to manufacturers and immunisation partners to make investment decisions

VIPS
VIPS is a close Alliance-wide collaboration effort.
VIPS will be delivered through two prioritisation phases by end Q1 2020

December 2018 – June 2019

Phase I: Initial prioritisation of innovations

24 innovations assessed

- Innovations’ characteristics and potential public health value;
- Potential ‘breadth of use’ (applicability to several vaccines)

Phase II: Final prioritisation of innovations paired with vaccines

9 innovations prioritised for Phase II

9 prioritised innovations analysed with 17 priority vaccines

July 2019 – March 2020

AIM: Prioritise ~ 3 - 4 innovations

- Short-listed innovations further analysed with priority vaccines

We are here

1 Purpose is to prioritise innovations “themselves”, “as platforms”, however it will be signaled for which individual vaccines or types of vaccines the innovation is seen to be most valuable.
24 vaccine product innovations are being assessed through the VIPS process

Primary vaccine containers (without delivery device)
- Blow-fill-seal (BFS) primary containers
- Dual chamber vials

Delivery technologies (not pre-filled)
- AD sharps-injury protection (SIP) syringes
- Disposable syringe jet injectors (DSJI)
- ID syringes

Integrated primary containers and delivery technologies
- Compact prefilled auto-disable devices (CPAD)
- Single-chamber cartridge injectors
- Dual-chamber delivery devices
- Microarray patches (MAP)
- Prefilled polymer BFS droppers/dispensers
- Prefilled dry-powder intranasal devices
- Solid-dose implants (with applicator)
- Sub-lingual dosage forms
- Oral fast-dissolving tablets

Labelling on primary packaging
- Freeze indicator on primary vaccine container
- Combined Vaccine vial Monitor (VVM) and Threshold Indicator (TI)
- Barcodes
- Radio Frequency Identification (RFID) labels

Packaging and safety
- Bundling devices
- Reconstitution vial adapters
- Plastic needles (for reconstitution)

Formulation
- Heat stable/controlled temperature chain (CTC) qualified liquid formulations
- Heat stable/ CTC qualified dry formulations
- Freeze damage resistant liquid formulations
VIPS methodology relies on a thorough evaluation process, centered on country needs.

VIPS advised by a **Steering Committee of 17 independent experts**, 9 are members of WHO vaccine advisory committees (PDVAC and IPAC).

An analytical evaluation framework allows a **transparent and balanced assessment of innovation benefits**.

Country consultations ensure that country needs drive the prioritisation.

VIPS criteria

<table>
<thead>
<tr>
<th>Primary Criteria</th>
<th>Secondary Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health impact</td>
<td></td>
</tr>
<tr>
<td>Coverage and equity impact</td>
<td></td>
</tr>
<tr>
<td>Safety impact</td>
<td></td>
</tr>
<tr>
<td>Economic costs (i.e. commodity, delivery, introduction and recurrent costs)</td>
<td></td>
</tr>
<tr>
<td>Potential breadth of innovation use</td>
<td>Technology readiness</td>
</tr>
<tr>
<td>Commercial feasibility</td>
<td></td>
</tr>
</tbody>
</table>

Phase I Indicators

<table>
<thead>
<tr>
<th>VIPS criteria</th>
<th>Primary ranking criteria</th>
<th>Phase I indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health impact</td>
<td>Ability of the vaccine presentation to withstand heat exposure</td>
<td>++ ++ ++</td>
</tr>
<tr>
<td></td>
<td>Ability of the vaccine presentation to withstand freeze exposure</td>
<td>++ ++</td>
</tr>
<tr>
<td></td>
<td>Ease of use</td>
<td>++ ++</td>
</tr>
<tr>
<td>Coverage & equity impact</td>
<td>Potential to reduce stock outs based on the number of separate components necessary to deliver the vaccine or improved ability to track vaccine commodities</td>
<td></td>
</tr>
<tr>
<td>Safety impact</td>
<td>Acceptability of the vaccine presentation to patients/caregivers</td>
<td>+ +</td>
</tr>
<tr>
<td></td>
<td>Likelihood of contamination</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Likelihood of needle stick injury</td>
<td></td>
</tr>
<tr>
<td>Economic costs (i.e. Delivery and introduction and recurrent costs)</td>
<td>Total economic cost of storage / transport of commodities per dose</td>
<td>++ ++</td>
</tr>
<tr>
<td></td>
<td>Total economic cost of the time spent by staff per dose</td>
<td>++ ++</td>
</tr>
<tr>
<td></td>
<td>Total economic cost of one-time / upfront purchases or investments required to introduce the vaccine presentation and of recurrent costs associated with the vaccine presentation (not otherwise accounted for)</td>
<td>++ ++</td>
</tr>
</tbody>
</table>

++ Give significantly more importance in evaluation + Give more importance in evaluation __ Keep weight neutral

[a Product Development for Vaccines Advisory Committee](#)
[b Immunization Practices Advisory Committee](#)
Evaluation framework for Phase I

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary ranking criteria</td>
<td></td>
</tr>
<tr>
<td>Health Impact</td>
<td>• Ability of the innovation to withstand heat exposure</td>
</tr>
<tr>
<td></td>
<td>• Ability of the innovation to withstand freeze exposure</td>
</tr>
<tr>
<td>Coverage and Equity impact</td>
<td>• Ease of use</td>
</tr>
<tr>
<td></td>
<td>• Potential to reduce stock outs based on the number of separate components necessary to deliver the vaccine or improved ability to track vaccine commodities</td>
</tr>
<tr>
<td></td>
<td>• Acceptability of the innovation to patients/caregivers</td>
</tr>
<tr>
<td>Safety impact</td>
<td>• Likelihood of contamination</td>
</tr>
<tr>
<td></td>
<td>• Likelihood of needle-stick injury</td>
</tr>
<tr>
<td>Economic costs</td>
<td>• Total cost of storage and transport of commodities per dose</td>
</tr>
<tr>
<td>(i.e. Delivery and Introduction and recurrent costs)</td>
<td>• Total cost of the time spent by staff per dose</td>
</tr>
<tr>
<td>Secondary criteria</td>
<td></td>
</tr>
<tr>
<td>Potential breadth of innovation use</td>
<td>• Applicability of the innovation to one or several types of vaccines</td>
</tr>
<tr>
<td></td>
<td>• Ability of the innovation to facilitate novel vaccine combination</td>
</tr>
</tbody>
</table>
VIPS methodology includes 3 country consultations

Understanding country immunisation barriers and needs
- Online survey
- Q4 2018
- 500 complete responses across 55 Gavi and non Gavi countries

Identifying vaccine-specific barriers and needs
- Online survey
- Q4 2019 - Ongoing

Feedback on 9 short-listed innovations under Phase I
- In-person in-depth interviews
- Q4 2019 - Ongoing
- 10-15 people in 5-6 countries at national and subnational levels

Inputs are used for weighting indicators to inform the prioritisation
Beyond countries, VIPS also ensures alignment and engagement with existing committees and industry

<table>
<thead>
<tr>
<th></th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jun</td>
<td>Jul</td>
<td>Aug</td>
</tr>
</tbody>
</table>

Short-list of innovations

WHO IPAC

WHO PDVAC

SAGE

Other interested parties (e.g. CEPI, Wellcome, etc.)

PATH/WHO DT-WG

Consultations

DCVMN

IFPMA

Vaccine and technology developers/manufacturers

Inputs/Feedback from selected manufacturers/developers based on data questions and gaps

Updates upon request
9 innovations have been short-listed for Phase II based on…

- Multiple public health benefits OR a strong unique benefit
- Broad antigen applicability
- And/ or additional strategic rationale for prioritisation
9 innovations short-listed for further analysis under Phase II

- Microarray patches (MAPs)
- Compact prefilled auto-disable devices (CPADs)
- AD sharps-injury protection (SIP) syringes
- Solid-dose implants
- Dual-chamber delivery devices
- Freeze damage resistant liquid formulations
- Heat stable/controlled temperature chain (CTC) qualified liquid formulations
- Combined Vaccine vial Monitor (VVM) and Threshold Indicator (TI)
- Barcodes / Radio Frequency Identification (RFID)

Note: Innovation pictures are just examples of innovations.
15 innovations have not been short-listed for Phase II …

- Other innovations offered similar benefits, plus additional benefits
- Potential public health benefits but some challenges
- Limited antigen applicability
VIPS aspirational vision

Beyond prioritisation and signalling, the Alliance recognises the need to support development and/or uptake of the prioritised innovations.

Support may be needed for:

- Product development
- Regulatory pathway
- Country studies
- Policy
- Procurement
- Implementation
- Etc.

Depending on Gavi 5.0 mandate and resources, the Alliance will consider how to support the prioritised innovations beyond prioritisation and signalling.
Catalyzing product development of vaccine technology innovations: Vaccine Innovation Prioritisation Strategy

Agenda

<table>
<thead>
<tr>
<th>Topic</th>
<th>Presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Alliance VIPS initiative</td>
<td>Marion Menozzi, Gavi</td>
</tr>
<tr>
<td>Nine prioritised innovations from the VIPS initial prioritisation phase</td>
<td>Debra Kristensen, PATH</td>
</tr>
<tr>
<td>Process for the final prioritisation phase</td>
<td>Birgitte Giersing, WHO</td>
</tr>
<tr>
<td>Q&A</td>
<td>Dr. Sotiris Missailidis</td>
</tr>
<tr>
<td>Panel discussion - ‘How VIPS may help drive vaccine delivery innovations but what else is needed beyond the prioritisation and communication?’</td>
<td>Dominic Hein, Gavi</td>
</tr>
<tr>
<td>Q&A</td>
<td>Dr. Sotiris Missailidis</td>
</tr>
</tbody>
</table>
Please open Menti.com on your web browser

Code: 92 39 8

1. Which of these 9 innovations are you familiar with? (Check all that apply.)
Mentimeter survey

part 1
About Microarray patches (MAPs)

- MAPs contain an array of micro-projections on a patch that deliver dry vaccine into the epidermis and/or dermis layers.

- Administered **without an applicator**, by applying pressure with fingers, or using an **integrated applicator**

Note: Innovation pictures are just examples of innovations

a Lead candidate MAPs for vaccine delivery either have no applicator or an integrated applicator. Therefore, MAPs with a separate applicator are not considered in this assessment

c https://www.who.int/immunization/research/meetings_workshops/PDVAC_2017_Delivery_Tech_Update_Zehrung_PATH.pdf?ua=1
MAPs: Rationale for prioritisation

Potential to resolve reconstitution issues, multiple public health benefits, and broad applicability

MAPs have the potential to:

- **Health Impact**
 - Withstand heat and freeze exposure
 - Positively impact coverage and equity:
 - Easier to use; use by lesser trained vaccinators or self-administration; alternative delivery scenarios
 - Less painful
 - Reduce stock-outs

- **Safety impact**
 - Reduced contamination/needlestick risk

- **Economic costs**
 - Save health care worker time

- **Potential breadth of innovation use**
 - Broad applicability and might facilitate novel vaccine combination
 - Might also improve immunogenicity
About Solid-dose implants (SDIs)

- Vaccines reformulated into a **solid format, shaped like a needle** to be implanted below the skin.
- Dose either **dissolves immediately or is released slowly**.
- Contained in a **cartridge or cassette** for easy handling prior to administration.
- Administered with an **applicator to propel the SDI into the skin**, separate and re-usable, or integrated and single use.

Note: Innovation pictures are just examples of innovations

b https://www.enesipharma.com/technologies/platform;

SDIs: Rationale for prioritisation

Potential multiple public health benefits and broad applicability. Potential to solve issues associated with MAPs. e.g. reactogenicity, payload issues

SDIs have the potential to:

- **Health Impact**
 - Withstand heat and freeze exposure
 - Positively impact **coverage and equity**:
 - Easier to use: use by lesser trained vaccinators; alternative delivery scenarios
 - Increased **acceptability to standard** needle and syringe
 - Reduce **stock-outs**

- **Safety impact**
 - Reduced contamination/needlestick risk

- **Economic costs**
 - Save **health care worker time**

- **Potential breadth of innovation use**
 - **Broad applicability** to all parenteral vaccines and might facilitate novel vaccine combination
About Compact prefilled auto-disable devices (CPADs)

- Integrated primary containers and injection devices prefilled with liquid vaccines.
- Design prevents reuse and minimizes the space required for storage and shipping.

Three CPAD subtypes have been assessed:

- **Preformed CPADs**: Manufactured ‘open’, supplied sterile, ready to fill/seal by the vaccine manufacturer.
- **Blow-fill-seal (BFS) CPADs**: Manufactured using BFS automated technology; produced, filled, and sealed in a continuous process.
- **Other CPAD types**.

Note: Innovation pictures are just examples of innovations

CPADs: Rationale for prioritisation

Potential multiple public health benefits, broad applicability and proven benefits in facilitating vaccine outreach

CPADs have the potential to:

<table>
<thead>
<tr>
<th>Health Impact</th>
<th>Safety impact</th>
<th>Economic costs</th>
<th>Potential breadth of innovation use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positively impact coverage and equity:</td>
<td>Reduced contamination/needlestick risk</td>
<td>Save health care worker time</td>
<td>Broad applicability to all liquid, parenteral vaccines</td>
</tr>
<tr>
<td>• Easier to use: use by lesser trained vaccinators; alternative delivery scenarios</td>
<td></td>
<td>• Reduce storage and transportation costs</td>
<td></td>
</tr>
<tr>
<td>• Increased acceptability of Uniject™ preformed CPADs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Reduce stock-outs</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gavi

World Health Organization

Bill & Melinda Gates Foundation

PATH

Unicef
About Dual-chamber delivery devices

- Dual chamber delivery devices are **fully integrated reconstitution technologies**.
- Prefilled with liquid and dry vaccine components, which are **mixed within the device and administered**.

Note: Innovation pictures are just examples of innovations

*https://www.pharmaceutical-networking.com/vetter-dual-chamber-delivery-systems/

*https://www.pharmapan.com/sites/default/files/downloads/2017-10/PHARMAPAN_Dual_Chamber_Blister_1.1.pdf

Dual-chamber delivery devices: Rationale for prioritisation

Potential to resolve reconstitution issues, multiple public health benefits and broad applicability

Dual-chamber delivery devices have the potential to:

Health Impact
- Positively impact coverage and equity:
 - Easier to use
 - Reduce vaccine and diluent wastage and stock-outs and simplify inventory processes
 - Increase acceptability: reduce the risk of reconstitution with the wrong diluent

Coverage and Equity impact

Safety impact
- Reduced contamination/needlestick risk

Economic costs
- Save health care worker time

Potential breadth of innovation use
- Broad applicability to dry and other two-component vaccines.
About Autodisable (AD) sharps-injury protection (SIP) syringes

- **Single-use, disposable syringes** with a mechanism that covers the needle after use to *reduce the risk of accidental needlestick injury*.
- **Retraction of the needle** into the barrel after injection or a *needle shield*.
- Some syringes have **SIP features that are automatically activated** and others require extra activation steps by the end user.

Note: Innovation pictures are just examples of innovations
AD SIP syringes: Rationale for prioritisation

Single public health benefit attributed to improved safety.
WHO Performance, Quality, and Safety group plans to require SIP features on both AD and reuse prevention syringes by the end of 2020.

AD SIP syringes have the potential to:

- **Safety impact**
 - Improve safety due to reduced risk of contamination and needle-stick injuries/transmission of bloodborne pathogens

- **Potential breadth of innovation use**
 - Broad applicability as AD SIP syringes can be applied to all parenteral vaccines
About Freeze damage resistant liquid formulations

• For many vaccines, when frozen the antigen-adjuvant particles agglomerate and sediment - resulting in the irreversible loss of potency.

• Developing novel freeze-stable formulations using different excipients (stabilising agents) could prevent agglomeration and stabilise the potency of vaccines.

• The addition of excipients has been demonstrated to reduce the freeze-sensitivity of hepatitis B vaccine and other vaccines containing aluminum-salt adjuvants including diphtheria, tetanus and pertussis (DTP); and pentavalent (hepatitis B, DTP, Haemophilus influenza type b) vaccines.

Note: Innovation pictures are just examples of innovations

a https://www.myelomacrowd.org/wp-content/uploads/2015/05/vials.jpg

b https://www.publichealthontario.ca/en/BrowseByTopic/InfectiousDiseases/PiDAC/Pages/Infection-Prevention-and-Control-for-Clinical-Office-Practice-Multidose-Vials.aspx
Freeze damage resistant liquid formulations: Rationale for prioritisation

Safeguards vaccine potency and prevents vaccine wastage. Prioritisation could raise the visibility of the technology to vaccine manufacturers currently developing liquid vaccines with aluminum adjuvants.

Freeze damage resistant liquid formulations have the potential to:

- Improve freeze resistance of liquid formulations
 - Safeguard the potency of the vaccine if accidentally exposed to freezing temperatures and help to prevent vaccine wastage

- Broad applicability to all liquid vaccines containing aluminum-salt adjuvant and potentially to other freeze-sensitive vaccines
About Heat stable/controlled temperature chain (CTC) qualified liquid formulations

- Liquid vaccine formulations that are **sufficiently heat stable** to be kept in a CTC.

- CTC use of vaccines allows for **single excursion of the vaccine into ambient temperatures** not exceeding +40°C for a minimum of 3 days, just prior to administration.

- Heat-stable vaccines differ in the **length of time** they can be stored in a CTC and the **maximum temperature** they can endure while **remaining stable and potent**.

- CTC qualification involves regulatory approval and prequalification by WHO.

Note: Innovation pictures are just examples of innovations
Heat stable/CTC qualified liquid formulations have the potential to:

<table>
<thead>
<tr>
<th>Health Impact</th>
<th>Safety impact</th>
<th>Economic costs</th>
<th>Potential breadth of innovation use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improve vaccine effectiveness: less susceptible to heat damage</td>
<td>Reduced contamination/needlestick risk</td>
<td>Reduce storage and transportation volume and associated costs</td>
<td>Broad applicability to all vaccines that are currently liquid and thermostable</td>
</tr>
<tr>
<td>Reduce likelihood of freeze exposure</td>
<td></td>
<td>Save health care worker time</td>
<td></td>
</tr>
<tr>
<td>Positively impact coverage and equity:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Easier to use; alternative delivery scenarios; ease cold chain logistics for health care workers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Increase acceptability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Reduce stock-outs</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
About Combined Vaccine Vial Monitor (VVM) and Threshold Indicators (TI)

- Combined VVM-TIs on primary containers **undergo gradual colour change** up to a specified peak threshold temperature and **rapidly react if exposed at or above the threshold temperature.**

- Currently, **VVMs and TIs are not integrated:**
 - **VVMs on primary containers** and **standalone TIs are currently** used when vaccines are kept in a controlled temperature chain (CTC)
 - TIs **purchased and distributed separately** from the vaccine and kept at temperatures below their threshold
 - VVM response **not rapid enough at higher temperatures** (e.g. >37°C or 40°C), whereas TI reacts rapidly if exposed at or above a defined threshold temperature.

- There are two types of combined VVM-TIs:
 - **VVM and TI placed together and reviewed separately**
 - **TI is integrated into the VVM:** looks and is interpreted identically to the existing VVMs.

Note: Innovation pictures are just examples of innovations
Combined VVM and TIs: Rationale for prioritisation

Potential to improve upon the current use of VVMs with separate TI indicators. Potential to facilitate use of vaccines in a CTC.

Combined VVM and TIs have the potential to:

Health Impact
- Positively impact **coverage and equity**:
 - Easier to use
 - Provide **more accurate assessment of the heat exposure status** of a vaccine, particularly when used in the CTC
 - Reduce **TI stock-outs**

Economic costs
- Save **health care worker time**

Potential breadth of innovation use
- **Broad applicability** to all vaccines, even if likely to be **most useful for vaccines prequalified for use in a CTC**
About Barcodes

- **Encode information** such as product numbers, serial numbers, supplier data, batch numbers and expiry dates.

- **Scanned electronically** using two dimensional (2D) scanners, laser or mobile device cameras to automatically capture information.

- Enable **tracking and monitoring of vaccine products** in supply chains.

- Possibility to **automatically import data into patient electronic medical records** (EMRs).

- **VIPS assessment** based on barcode placement on vaccine primary and higher packaging levels.

Note: Innovation pictures are just examples of innovations

About Radio Frequency Identification (RFID)

- RFID tags can be affixed to vaccine primary containers.
- Store a wide range of information useful for inventory control, patient monitoring and providing data for electronic medical record systems.
- An RFID system consists of three components; (i) a tag, (ii) a reader and (iii) the middleware.
- Possibility to identify tags within range – no need to individually scan every tag.

Note: Innovation pictures are just examples of innovations
Barcodes and RFIDs: Rationale for prioritisation

Potential to improve coverage and increase measurement of coverage and safety monitoring. WHO recommendations and UNICEF interest.

Barcodes and RFIDs have the potential to:

- **Health Impact**
 - Positively impact coverage and equity:
 - Reduce missed opportunities; increase acceptability by improving patient safety
 - Reduce stock-outs: improve traceability; increase efficiencies in stock management

- **Economic costs**
 - Save health care worker time

- **Potential breadth of innovation use**
 - Barcodes and RFIDs could be applied to all vaccines, there are no restrictions based on technical feasibility.
Menti survey

Please open Menti.com on your web browser

Code: 92 39 8

2. Which innovations are of most interest to your organization?
Mentimeter survey

part 2
Catalyzing product development of vaccine technology innovations: Vaccine Innovation Prioritisation Strategy

Agenda

<table>
<thead>
<tr>
<th>Topic</th>
<th>Presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>• The Alliance VIPS initiative</td>
<td>Marion Menozzi, Gavi</td>
</tr>
<tr>
<td>Nine prioritised innovations from the VIPS initial prioritisation phase</td>
<td>Debra Kristensen, PATH</td>
</tr>
<tr>
<td>Process for the final prioritisation phase</td>
<td>Birgitte Giersing, WHO</td>
</tr>
<tr>
<td>• Q&A</td>
<td>Dr. Sotiris Missailidis</td>
</tr>
<tr>
<td>• Panel discussion - ‘How VIPS may help drive vaccine delivery innovations but what else is needed beyond the prioritisation and communication?’</td>
<td>Dominic Hein, Gavi</td>
</tr>
<tr>
<td>• Q&A</td>
<td>Dr. Sotiris Missailidis</td>
</tr>
</tbody>
</table>
Under Phase II the 9 short-listed innovations will be further analysed for final prioritisation of 3-4 innovations.

Purpose is to prioritise innovations “themselves”, “as platforms”, however it will be signaled for which individual vaccines or types of vaccines the innovation is seen to be most valuable.

1 Purpose is to prioritise innovations “themselves”, “as platforms”, however it will be signaled for which individual vaccines or types of vaccines the innovation is seen to be most valuable.
Landscape of vaccines in VIPS scope

Vaccine antigens and categorisation

Group 2
- mOPV1
- bOPV
- DTaP
- TT
- TD
- mOPV
- Hib
- Hexa
- DTwPHib

Group 1
- HepB
- MMR
- BCG
- Rubella
- IPV
- MR
- Rotavirus
- Penta
- HPV
- Measles
- DTwP
- PCV
- DTwP boosters

Group 2a
- HepA
- YF
- JE

Group 3a
- Dengue
- Men A, C
- Flu seasonal
- Flu H1N1
- Typhoid PS

Group 4
- pFlu
- RSV
- Ebola
- HepE

Group 5
- HIV
- ETEC
- Malaria
- TB
- NTS
- HSV
- Rotavirus
- GAS
- Shigella
- Influenza

PIPECLE Priority antigens based on BoD, unmet public health need (phase II and beyond)

Group 6
- Nipah
- Lassa
- RVF
- Chik
- CCHF
- MERS
- Zika
- SARS

Group 6a
- Pipeline Epidemic response
- Pathogens (phase I and beyond)

KEY:
1. Included in Gavi VIS 5.0
2. Not procured by UNICEF
3. Next generation
4. Gavi learning agenda
5. PAHO Revolving Fund
Landscape snapshot of antigen categorisation to map overlap

Vaccine antigens and categorisation

WHO recommended / Unicef procured antigens – routine immunization, all regions

Group 2
- mOPV1
- bOPV5
- DTaP5
- TT
- TD1,5
- mOPV3
- Hib2,5
- Hexa2,5
- DTwpHib2,5

Group 1
- MMR5
- BCG5
- HepB5
- Rubella
- IPV5
- HepB (bd)1,5
- Rotavirus5
- HPV
- DTwp5
- PCV5
- DTwp boosters1
- Measles

Group 3
- Typhoid (conj)5
- Meningitis (conj,multi)1,5
- Rabies1,5
- MenA5
- OCV5

Group 4a
- HepA2,5

Group 4
- YF5
- JE

Group 5
- RSV1
- HIV
- ETEC
- Malaria
- TB3
- NTS
- HSV
- Rotavirus3
- GBS
- Influenza3
- GAS
- Shigella

Group 5a
- Nipah
- Lassa
- RVF
- Chik
- CCHF
- MERS
- Zika
- SARS

Group 6
- pFlu4,5
- Ebola
- HepE
- Nipah
- Lassa
- RVF
- Chik
- CCHF
- MERS
- Zika
- SARS

Group 6a

PIPETLINE Priority antigens based on BoD, unmet public health need (phase II and beyond)

KEY:
1. Included in Gavi VIS 5.0
2. Not procured by UNICEF
3. Next generation
4. Gavi learning agenda
5. PAHO Revolving Fund
Distribution of the 17 priority vaccines for Phase II within the landscape of 48 vaccines

WHO recommended / Unicef procured antigens – routine immunization, all regions

- Group 1
 - IPV
 - MR
 - Rotavirus
 - HPV
 - PCV
 - measles
 - DTwP boosters

- Group 2
 - HepB
 - MMR
 - BCG
 - Rubella
 - mOPV
 - bOPV
 - DTaP
 - DTwP
 - TT
 - TD
 - mOPV
 - Hib
 - Hexa
 - DTwPHib

WHO recommended / Unicef procured antigens – high risk pops

- Group 3a
 - Dengue
 - Men A, C
 - Flu seasonal
 - Flu H1N1
 - Typhoid PS

- Group 3
 - Typhoid (conj)
 - Meningitis (conj,multi)
 - Rabies
 - MenA
 - OCV

GAVI Supported vaccines

- Group 4a
 - HepA
- Group 4
 - YF
 - JE

GROUP 5

- RSV
- HIV
- ETEC
- Malaria
- TB
- HSV
- Rotavirus
- GBS
- influenza
- Shigella

GROUP 5a

- Pipeline: Priority antigens based on BoD, unmet public health need (phase II and beyond)

GROUP 6

- pFlu
- Ebola
- HepE
- RVF
- Chik
- CCHF
- MERS
- Zika
- SARS

GROUP 6a

- Pipeline: Epidemic response pathogens (phase I and beyond)

KEY:

1. Included in Gavi VIS 5.0
2. Phase II or beyond
3. Not procured by UNICEF
4. Next generation
5. Gavi learning agenda
6. PAHO Revolving Fund
Evaluation framework for Phase II (1/2)

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health Impact</td>
<td>• Vaccine efficacy</td>
</tr>
<tr>
<td></td>
<td>• Vaccine effectiveness</td>
</tr>
<tr>
<td></td>
<td>• Ability of the innovation to withstand heat exposure¹</td>
</tr>
<tr>
<td></td>
<td>• Ability of the innovation to withstand freeze exposure¹</td>
</tr>
<tr>
<td>Coverage and equity impact</td>
<td>• Number of fully or partially immunised individuals (relative to target pop)</td>
</tr>
<tr>
<td></td>
<td>• Ease of use²</td>
</tr>
<tr>
<td></td>
<td>• Presentation which helps prevent missed opportunities due to reluctance to open MDV without preservative</td>
</tr>
<tr>
<td>Safety impact</td>
<td>• Number of vaccine product-related adverse events</td>
</tr>
<tr>
<td></td>
<td>• Likelihood of contamination²</td>
</tr>
<tr>
<td>Economic costs</td>
<td>• Total cost of a vaccine regimen with the innovation, including wastage</td>
</tr>
<tr>
<td>(i.e. Commodity, Delivery</td>
<td>• Total cost of delivery technology(ies) used for the vaccine regimen,</td>
</tr>
<tr>
<td>and Introduction and</td>
<td>including wastage</td>
</tr>
<tr>
<td>recurrent costs)</td>
<td>• Total cost of safety boxes used for the vaccine regimen, incl wastage</td>
</tr>
<tr>
<td></td>
<td>• Total cost of storage and transport of commodities (per vaccine regimen)¹</td>
</tr>
<tr>
<td></td>
<td>• Total cost of the time spent by staff (per vaccine regimen)¹</td>
</tr>
<tr>
<td></td>
<td>• Total cost of introduction and recurrent costs (not otherwise accounted for)¹</td>
</tr>
</tbody>
</table>

¹ Same indicators as for Phase I but further assessed under Phase II due to the antigen/vaccine pairing
² This indicator is re-assessed in Phase II only when the comparator for a specific vaccine is a MDV, requiring a new evaluation – The comparator SDV is assessed in Phase I
Evaluation framework for Phase II (2/2)

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary ranking criteria<sup>1</sup></td>
<td></td>
</tr>
<tr>
<td>Technology readiness</td>
<td>• Clinical development pathway complexity</td>
</tr>
<tr>
<td></td>
<td>• Technology development challenges</td>
</tr>
<tr>
<td></td>
<td>• Regulatory pathway complexity</td>
</tr>
<tr>
<td></td>
<td>• Complexity of manufacturing the innovation</td>
</tr>
<tr>
<td></td>
<td>• Robustness of the innovation pipeline</td>
</tr>
<tr>
<td>Commercial feasibility</td>
<td>• Potential breadth of market size</td>
</tr>
<tr>
<td></td>
<td>• Existence of partnerships to support development and commercialisation</td>
</tr>
<tr>
<td></td>
<td>• Known barriers to global access to the innovation</td>
</tr>
<tr>
<td></td>
<td>• Stakeholders’ interest</td>
</tr>
</tbody>
</table>

¹ These criteria will be evaluated in an absolute manner, not relative to a comparator.
In Phase II, VIPS is engaging with the Delivery Technologies Working Group (DT-WG)

DT-WG goals and objectives

- Platform for **industry and the public sector** to engage on the presentation, packaging, and delivery aspect of vaccine products.
- Inform industry about **LMIC programmatic preferences & operational realities**.
- Optimise innovation of immunisation products for public-sector use.
- Sensitize the public sector to **industry constraints and economic realities** of investing in product development.

Consultations objectives

- Update broader set of immunisation stakeholders, including **industry**, on VIPS.
- Obtain **feedback on VIPS prioritised innovations** from the perspective of **technical feasibility, manufacturability, regulatory hurdles**.
A final report will be published by Q3/Q4 2020

December 2018 – June 2019
July 2019 – March 2020
April-December 2020

Phase I: Initial prioritisation of innovations
- 24 innovations assessed
- 9 innovations prioritised for Phase II

Phase II: Final prioritisation of innovations paired with vaccines
- 9 prioritised innovations analysed with 17 priority vaccines

AIM: Prioritise ~ 3 - 4 innovations

Publication of a final report:
- Process and methodology;
- Most valuable innovations including rationale, recommendations;
- Inform research agenda.
- All assessments will be made public.

1 Purpose is to prioritise innovations “themselves”, “as platforms”, however it will be signaled for which individual vaccines or types of vaccines the innovation is seen to be most valuable.
Catalyzing product development of vaccine technology innovations: Vaccine Innovation Prioritisation Strategy

Agenda

<table>
<thead>
<tr>
<th>Topic</th>
<th>Presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>• The Alliance VIPS initiative</td>
<td>Marion Menozzi, Gavi</td>
</tr>
<tr>
<td>Nine prioritised innovations from the VIPS initial prioritisation phase</td>
<td>Debra Kristensen, PATH</td>
</tr>
<tr>
<td>• Process for the final prioritisation phase</td>
<td>Birgitte Giersing, WHO</td>
</tr>
<tr>
<td>Q&A</td>
<td>Dr. Sotiris Missailidis</td>
</tr>
<tr>
<td>• Panel discussion - ‘How VIPS may help drive vaccine delivery innovations but what else is needed beyond the prioritisation and communication?’</td>
<td>Dominic Hein, Gavi</td>
</tr>
<tr>
<td>• Q&A</td>
<td>Dr. Sotiris Missailidis</td>
</tr>
</tbody>
</table>