Supplementary Training Modules on Good Manufacturing Practice

Validation

Validation

- Part 1. General overview on qualification and validation
- Part 2. Qualification of HVAC and water systems
- Part 3. Cleaning validation
- Part 4. Analytical method validation
- Part 5. Computerized system validation
- Part 6. Qualification of systems and equipment
- Part 7. Non sterile product process validation
Supplementary Training Modules on Good Manufacturing Practice

Cleaning Validation

Part 3

Validation

Objectives

To discuss principles and approaches to cleaning validation including:
- Protocols and reports
- Personnel and equipment
- Use of detergents
- Microbiology
- Sampling
- Analytical methods and
- Acceptable limits
Principle

- The objectives of GMP include prevention of possible contamination and cross-contamination.

- Contamination by a variety of substances:
 - contaminants (e.g. microbes, previous products (both API and excipient residues), residues of cleaning agents, airborne materials (e.g. dust and particulate matter), lubricants and ancillary material, such as disinfectants)

- Also decomposition residues from product or detergents.
Validation

Principle (2)

- Adequate cleaning procedures important
- Documented evidence needed - cleaning procedure will provide clean equipment, suitable for intended use.
- What is the objective of cleaning validation?
 - product, detergent and microbial residues
 - prevent possible contamination and cross-contamination
Validation

Principle (3)

- Where is cleaning validation required?
 - Not necessarily for non-critical cleaning, e.g. between batches of the same product (or different lots of the same intermediate in a bulk process), or of floors, walls, the outside of vessels, and following some intermediate steps.
 - Considered important in multiproduct facilities - should be performed, e.g. for equipment, sanitization procedures and garment laundering.
Scope

- Guidelines: General aspects of cleaning validation
- Excluding specialized cleaning or inactivation
 - e.g. for removal of viral or mycoplasmal contaminants in the biological manufacturing industry.
- Normally cleaning validation needed for critical cleaning, e.g.
 - between manufacturing of one product and another
 - contact surfaces (products, drug products and API).
Validation

General

- Written SOPs for cleaning processes – validated

- Cleaning policy and cleaning validation procedure to cover:
 - contact surfaces;
 - cleaning after product changeover;
 - between batches in campaigns;
 - bracketing products for cleaning validation; and
 - periodic evaluation and revalidation of the number of batches manufactured between cleaning validations.
Validation

General (2)

- The company has to prove consistency
- What are the variables when a cleaning procedure is followed?
- How many consecutive applications of the cleaning procedure should be performed?
- Training of personnel
Cleaning validation protocols

- Approved by QC or QA and to cover, e.g.
 - disassembly of system;
 - pre-cleaning;
 - cleaning agent, concentration, solution volume, water quality;
 - time and temperature;
 - flow rate, pressure and rinsing;
 - complexity and design of the equipment;
 - training of operators; and
 - size of the system.
Validation

Cleaning validation protocols (2)

- The cleaning validation protocol should include:
 - objectives, responsible people;
 - description of the equipment including the make, model, serial number or other unique code;
 - time intervals; bioburden; cleaning procedures;
 - equipment used for routine monitoring (e.g. conductivity meters, pH meters and total organic carbon analysers);
 - number of cleaning cycles; sampling procedures (e.g. direct sampling, rinse sampling, in process monitoring and sampling locations) and the rationale for their use
The cleaning validation protocol should include (2):

- *data on recovery studies (efficiency of the recovery of the sampling technique should be established)*;
- *analytical methods*;
- *acceptance criteria (with rationale for setting the specific limits) including a margin for error and for sampling efficiency*;
- *cleaning agent to be used*;
- *revalidation requirements*.
Cleaning validation protocols (4)

- Cleaning agent used, scientifically justified and based on:
 - the solubility of the materials to be removed;
 - the design and construction of the equipment and surface materials to be cleaned;
 - the safety of the cleaning agent;
 - the ease of removal and detection;
 - the product attributes;
 - the minimum temperature and volume of cleaning agent and rinse solution; and
 - the manufacturer's recommendations
Cleaning validation protocols (5)

Bracketing:

- Very similar cleaning procedures for products and processes - no need for individual validation. “Worst case” may be acceptable and should be justified.

- Consider type of products and equipment; allowed only where products are similar in nature or property and processed on the same equipment; and identical cleaning procedures used.
Cleaning validation protocols (6)

Bracketing:

- Representative product - most difficult to clean.

- Equipment - only when it is similar or the same equipment in different sizes (e.g. 300 l, 500 l and 1000 l tanks).
 - *Alternative approach may be to validate the smallest and the largest sizes separately.*
Cleaning validation reports

- The relevant cleaning records – *(signed by the operator, checked by production and reviewed by quality assurance)* – and source data *(original results)* should be kept.

- The results of the cleaning validation should be presented in cleaning validation reports stating the *outcome and conclusion*.
Cleaning of contact surfaces to be validated, with consideration to “non-contact” parts. Critical areas should be identified.

Dedicated equipment for:

- products which are difficult to clean,
- equipment which is difficult to clean,
- products with a high safety risk where it is not possible to achieve the required cleaning acceptance limits using a validated cleaning procedure.
Equipment (2)

- If one SOP for cleaning a piece of equipment, review:
 - products being produced,
 - cleaning in a large campaign,
 - cleaning between batches of different products.

- The design of equipment may influence the effectiveness of the cleaning process.

- Consider design, e.g. V-blenders, transfer pumps or filling lines.
Basic Principles of GMP

- Which are the critical areas for sampling?
- What would be considered an appropriate approach for cleaning validation for this piece of equipment?
Basic Principles of GMP

- Which are the critical areas for sampling?
- What would be considered an appropriate approach for cleaning validation for this piece of equipment?
Detergents

- Released by quality control and meet food standards or regulations
- Composition known
- Easily removed with rinsing - demonstrated - with acceptable limits defined
- If persistent residues (e.g. cationic detergents) - avoided
- Consider also detergent breakdown
Validation

Microbiology

- Prevent microbial growth and remove contamination
- Documented evidence
 - routine cleaning
 - storage of equipment
- The period and conditions
 - storage of unclean equipment before cleaning
 - between cleaning and equipment reuse
- Equipment stored in a dry condition after cleaning (no stagnant water)
- Control of bioburden important
Basic Principles of GMP

- What is important about cleaning validation for components/parts of equipment?

- Consider also the different materials, e.g. stainless steel contact surfaces, silicon seals and others
Sampling (General)

- Clean as soon as possible after use
 - especially topical products, suspensions and bulk drug or
 - where the drying of residues will directly affect the efficiency of a cleaning procedure

- Two methods of sampling:
 - direct surface sampling and
 - rinse samples

- Combination of the two - most desirable
Validation

Sampling (General) (2)

- Re-sampling:
 - *not to be done before or during cleaning*

- Constant re-testing and re-sampling:
 - *can show that the cleaning process is not validated*
 - *may indicate presence of unacceptable residue and contaminants resulting from an ineffective cleaning process*
Direct surface sampling (direct method)

- Most commonly used method
- Use “swabs” (inert material) - type of sampling material should not interfere with the test
- Factors to be considered include:
 - supplier of the swab,
 - area swabbed, number of swabs used, whether they are wet or dry swabs,
 - swab handling and swabbing technique
Validation

Direct surface sampling (direct method) (2)

- Other factors include:
 - *location from which the sample is taken (including worst case locations, identified in the protocol)*
 - *composition of the equipment (e.g. glass or steel)*

- Critical areas (hardest to clean)
 - *e.g. in semi-automatic/fully automatic clean-in-place systems*

- Use appropriate sampling medium and solvent
Rinse samples (indirect method)

- Allows sampling of:
 - a large surface
 - areas that are inaccessible or that cannot be routinely disassembled

- Provides an "overall picture"

- Useful for checking for residues of cleaning agents

- In combination with other sampling methods such as surface sampling
Rinse samples (indirect method) (2)

- The manufacturer has to provide evidence that samples are accurately recovered
- What is considered acceptable in terms of recovery?
> 80% is considered good
Validation

Recovery

> 80% is considered good

> 50% is considered reasonable
Validation

> 80% is considered good

> 50% is considered reasonable

< 50% is considered questionable
Batch placebo method

- A placebo batch is manufactured and checks are done for carry-over of the previous product
 - Expensive and laborious process
 - Little assurance that the contaminants are dislodged
 - Particles not necessarily uniformly dispersed
 - Method used in conjunction with rinse and/or surface sampling method(s)
 - Samples taken throughout the process of manufacture
 - Sensitivity of the assay may be greatly reduced by dilution of the contaminant
Validated analytical methods – able to detect residuals or contaminants:

- *specific for the substance(s) being assayed*
- *at an appropriate level of cleanliness (sensitivity)*

Sensitive and specific - may include:

- *chromatographic methods (e.g. high pressure liquid chromatography (HPLC), gas chromatography (GC), and high pressure thin-layer chromatography (HPTLC)). Others include (alone or in combination), e.g. total organic carbon (TOC), pH, conductivity, ultraviolet (UV) spectroscopy, and ELISA*
Validation

Analytical methods (2)

- Validation of the analytical method should include, e.g.
 - precision, linearity and selectivity (the latter if specific analytes are targeted);
 - limit of detection (LOD);
 - limit of quantitation (LOQ);
 - recovery, by spiking with the analyte; and
 - reproducibility

- Detection limit (sufficiently sensitive) to detect the established acceptable level of residue / contaminants
Establishing acceptable limits

- Limits: Practical, achievable and verifiable
- Rationale: Logical, based on knowledge of materials
- Each situation assessed individually
- Principal reactant and other chemical variations
- Screening (thin-layer chromatography) in addition to chemical analyses where necessary
Establishing acceptable limits (2)

There should be no residue from:

- Previous product
- Reaction by-products and degradants
- Cleaning process itself (e.g. detergents or solvents)

Remember: Uniform distribution of contaminants is not guaranteed
Establishing acceptable limits (3)

- The limit-setting approach can:
 - be product-specific
 - group products into families and choose a worst case product
 - group products into groups according to risk, e.g. very soluble products, products with similar potency, highly toxic, or difficult to detect products
 - use different safety factors for different dosage forms based on physiological response (this method is essential for potent materials)
Establishing acceptable limits (4)

- Limits may be expressed as:
 - a concentration in a subsequent product (ppm),
 - limit per surface area (mcg/cm\(^2\)), or
 - in rinse water as ppm.

- Limits for carry-over of product residues should meet defined criteria.

- What are the three most commonly used criteria?
Establishing acceptable limits (5)

The three most commonly used criteria are:

- **Visually clean** No residue visible on equipment after cleaning. Spiking studies to determine the concentration at which most active ingredients are visible. (May not be suitable for high potency, low-dosage drugs.)

- **No more than 10 ppm** of one product will appear in another product (basis for heavy metals in starting materials).

- **No more than 0.1%** of the normal therapeutic dose of one product will appear in the maximum daily dose of a subsequent product.
Establishing acceptable limits (6)

- The most stringent of three options should be used.
- Certain allergenic ingredients and highly potent material should be undetectable by the best available analytical methods.
 - e.g. penicillins and cephalosporins
 - e.g. anovulent steroids, potent steroids and cytotoxics
- Dedicated manufacturing facilities needed.
Validation

- Group session