Facility Design and Resource Optimisation for Multi-Product Vaccine Manufacturing

Mia Bennemo
DCVMN Hyderabad
May, 2015
Overview

• Understanding manufacturing costs
• Case study - Facility design and operation
 • Impact of single-use systems
 • Impact of segregated processing areas
 • Impact of changeover scheduling strategies
• Summary
Understanding manufacturing costs
Classic biomanufacturing costs

Classic scenario for biomanufacturing

- Single product: low flexibility
- Capital intensive
- Long construction lead time
- Fixed costs dominate
- Major gamble prior to launch
Facility utilization is key to minimizing production costs

Scenario in flexible facilities

- High degree of utilization due to process flexibility
- Output scale and demand match
- Multi-product production possible to drive further utilization improvements

The negative effect of under-utilization can hardly be compensated elsewhere, unless one builds small and (partly) disposable to reduce fixed cost by any feasible means.
Observations on cost drivers form a basis for facility design strategies

Observations

- Fixed costs dominate costs in conventional facilities
- Facility utilization is the dominating cost driver

Strategies for improved facility utilization

- Implementation of single-use systems
- Facility design to improve utilization
- Changeover scheduling

Single-use
Single-use technologies

<table>
<thead>
<tr>
<th>Unit Operation</th>
<th>Single-use option available</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell culture</td>
<td>Yes</td>
<td>Options exist from multiple vendors, but limited in size.</td>
</tr>
<tr>
<td>Microbial fermentation</td>
<td>Yes</td>
<td>A few options exist, limited in size.</td>
</tr>
<tr>
<td>High pressure homogenizer</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Mixing</td>
<td>Yes</td>
<td>Mature application. Many options from different vendors, limited in size.</td>
</tr>
<tr>
<td>Liquid handling</td>
<td>Yes</td>
<td>Mature application. Many options from different vendors, limited in size.</td>
</tr>
<tr>
<td>Clarification</td>
<td>Yes</td>
<td>Depth filtration - Mature application. Many options from different vendors. Centrifugation – Options exist</td>
</tr>
<tr>
<td>Chromatography</td>
<td>Yes</td>
<td>Options exist, both for skids and columns (columns are typically used several times), but limited size range.</td>
</tr>
<tr>
<td>TFF</td>
<td>Yes</td>
<td>Options exist, both for skids and filters but limited size range.</td>
</tr>
<tr>
<td>Ultracentrifugation</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>
Claims made related to single-use systems

On costs

- Reduce capital investments (20-50% from comparable stainless facility)
- Delay investments
- Reduce validation cost (e.g. CIP methods)
- Reduce cleaning costs – personnel, water, steam and chemicals
- Increase some consumables costs (for disposables)
- Add and take away as needed - avoid cost of a rebuild
- Standardize and modularize – cheap to change, cheap to operate

On revenue

- Shorten time to readiness of facility
- More product, especially for multi-product facility
- Flexible. Be alert for the next challenge.
Case study: Facility design and operation in stick-build facility
Case study design: Cell-based vaccine facility

- 500L scale cell-based vaccine
- Vial-to-reactor upstream process
- Filtration and chromatography downstream
- Single- or multi-purpose
Evaluating the impact of single-use systems
Two possible process designs

Stainless Steel
Conventional process equipment, but single-use buffer hold bags

Single-Use
Single-use equipment where possible
Basic facility design requirements

- Production Building - production and clean utilities
- Warehouse – raw material, consumables, product
- Central Utilities Building – Non GMP utilities
- Administration Building - Offices, QC Laboratory, Canteen
Facility and utility design differences when implementing single-use

<table>
<thead>
<tr>
<th>Facility</th>
<th>Floor area (m²)</th>
<th>SST</th>
<th>SU</th>
<th>SST-SU difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production building</td>
<td>2580</td>
<td>1968</td>
<td>-24%</td>
<td></td>
</tr>
<tr>
<td>Admin & lab building</td>
<td>1111</td>
<td>1111</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Warehouse</td>
<td>337</td>
<td>611</td>
<td>+81%</td>
<td></td>
</tr>
<tr>
<td>Central Utilities Building</td>
<td>325</td>
<td>325</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4353</td>
<td>4015</td>
<td>-8%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Utilities</th>
<th>Generator capacity</th>
<th>SST</th>
<th>SU</th>
<th>SST-SU difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purified Water generator (L/day)</td>
<td>18000</td>
<td>2200</td>
<td>-88%</td>
<td></td>
</tr>
<tr>
<td>WFI generator (L/day)</td>
<td>14000</td>
<td>1300</td>
<td>-91%</td>
<td></td>
</tr>
<tr>
<td>Clean Steam Generator (kg/h)</td>
<td>87</td>
<td>17</td>
<td>-80%</td>
<td></td>
</tr>
</tbody>
</table>

SST = Stainless Steel
SU = Single-use
Capital investment distribution when implementing single-use

<table>
<thead>
<tr>
<th>Component</th>
<th>Stainless Steel (SST)</th>
<th>Single use (SU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excavation</td>
<td>~ 40%</td>
<td>~ 50%</td>
</tr>
<tr>
<td>Installation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buildings</td>
<td>~ 30%</td>
<td>~ 20%</td>
</tr>
<tr>
<td>Construction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ancillary facilities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment</td>
<td>~ 15%</td>
<td>~ 15%</td>
</tr>
<tr>
<td>Piping</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrumentation</td>
<td>~ 15%</td>
<td></td>
</tr>
<tr>
<td>Contractors fee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start-up Contingency</td>
<td>~ 15%</td>
<td></td>
</tr>
<tr>
<td>Working capital</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total capital investment</td>
<td>30% lower</td>
<td></td>
</tr>
</tbody>
</table>

Total capital investment for SU is 30% lower than for SST
Project execution comparison when implementing single-use systems

Stainless Steel
- Basic: 6 months
- Detailed Design: 14.5 months
- Procurement: 17 months
- Construction: 22.5 months
- Verification: 10.5 months
- Validation: 12 months

Duration: 43 months

Single-use
- Basic: 6 months
- Detailed Design: 14.5 months
- Procurement: 16 months
- Construction: 21.5 months
- Verification: 9.5 months
- Validation: 9 months

Duration: 37 months
Drivers for project timeline reductions

A Single-Use strategy means

- More standard, off-the-shelf equipment units
- Few long lead equipment items
- Less complexity in facility
- Less installation work

The Effects

- Facility construction will set the time frame
- Time saving in cleaning validation
- Less risk of delays

Shorter project adds value if on critical time-line
Time saved frees up resources for other activities
A single-use strategy provides a strong throughput benefit in multi-product facilities

- **3 products:**
 - Stainless Steel: 16% more batches with SU
 - Single-use: 29% more batches with SU

- **1 product:**
 - Stainless Steel: 16% more batches with SU
 - Single-use: 29% more batches with SU
Summary of Findings: Single-use system implementation

- Facility size is similar, but distribution of clean room and warehouse space is different
- Capital investment and project timelines are reduced
- Higher impact on output in a multi-product facility compared to a single-product facility
Thank you

GE Healthcare Bio-Sciences AB, a General Electric company.

GE Healthcare Bio-Sciences AB
Björkgatan 30
751 84 Uppsala
Sweden

KUBio is a trademark of GE Healthcare companies.
GE, imagination at work and GE monogram are trademarks of General Electric Company.

All goods and services are sold subject to the terms and conditions of sale of the company within GE Healthcare which supplies them. A copy of these terms and conditions is available on request. Contact your local GE Healthcare representative for the most current information.

© 2015 General Electric Company – All rights reserved.