Vaccine Upstream Processing – an overview

Dr. Mats Lundgren
GE Healthcare Life Sciences

Imagination at work
New mood of optimism is sweeping through the vaccines business. . .

Healthcare needs and economics

Emerging technologies expand vaccine applications to new disease areas

New set of innovative and high priced vaccines
Eg. rotavirus, HPV, and meningitis

The high profile promotion of vaccines in developing countries by the GAVI, Gates Foundation, DCVMN, PATH etc
How Vaccines are manufactured

The Vaccines

Bacteria based

Virus based

Protein based

Polysaccharide based

DNA based

The Manufacturing process

Cell culture / Fermentation

Purification

Fill and Finish

Analysis (QC/QA)

Number and order of the different steps depends on the specific vaccine production
Different types of marketed influenza vaccines.

Whole virus
Split virus
Subunit
Live attenuated
The evolution of vaccine processes

1st generation processes:
Focus on upstream, optional inactivation

2nd generation processes:
Separations based on centrifugation, filtration

Currently developed processes:
Quality based approach: Quality by Design
Focus on entire process incl. purification and virus safety
Outline of presentation

Cell substrates for virus production
Cell culture using Microcarriers
Scale up of Microcarrier cultures
Conclusions
Cell substrates for virus production
Selecting a cell line for virus production

• Cell substrate evolution from primary to diploid to continuous cell lines...

• Modern options: Vero, MDCK, EBx™, AGE, PER.C6™ ...

• Requirements
 – Suitable for GMP production
 – Good safety track record
 – Good virus propagation
 – Broadly and highly permissive
 – Scalable to high volume production

from: Pereira et al. Biotech Bioeng; 2004; 85; 5
Vero cells

- Accepted by regulatory authorities for viral vaccine production
- Used for production of live attenuated viral vaccines
- Long track record for production of polio and rabies vaccine
- The cell line was derived in 1962 from kidney epithelial cells of the African Green Monkey
- Available from ATCC at passage level 121
- Most vaccine manufacture is performed with cells at passage levels in the 130’s or 140’s
- Non-tumorigenic at vaccine production passage levels
- Anchorage dependent, can be expanded on Cytodex™ microcarries
MDCK and Vero cells

<table>
<thead>
<tr>
<th></th>
<th>MDCK</th>
<th>Vero</th>
</tr>
</thead>
</table>
| **+** | • Higher productivity
• Technically easier
• Less risk for propagation of adventitious viruses | • Platform cell line (can be used for several virus vaccines)
• Good safety record
• Used for several marketed vaccines |
| **−** | • Potential tumorigenicity/oncogenicity
• New cell substrate
• Restricted to influenza | • Lower productivity
• Technically challenging
• Potential propagation of adventitious viruses |
Cell culture using Microcarriers
Scale up of adherent cell cultures

Increase volume

Increase number of units

One 2500 L bioreactor with a carrier concentration of 3 g/L (Cytodex™ 1) provides the same surface area as 40,000 roller bottles (850 cm²/bottle)

Genetic Engineering News, 2007
Why Microcarriers in vaccine production?

- Necessary for adherent cell lines
- Proven scalable technology (1000’s of L)
- Large volume to surface ratio (less waste problem)
- Cost effective surface supply/m2
- Separates cells from secreted products
- Microporous carriers allow polarization & differentiation
- Increased productivity of functional product
The history of Polio vaccine processes

- 1955: Inactivated Polio vaccine (IPV) launched (Salk Type)
- 1960: Attenuated Polio vaccine launched (Sabin type)
- 1960s: Collaboration between Prof. Van Wezel (RIVM/NVI Netherlands) and GE (former Pharmacia) around microcarrier cultures of primary monkey cells.
- 1970s: New IPV purification method using chromatography resins
- 1980s: Switch to Vero cell production
- 2010s: Updating the IPV processes using modern technology
Cytodex™ specifications

<table>
<thead>
<tr>
<th></th>
<th>Cytodex 1</th>
<th>Cytodex 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix</td>
<td>Sephadex™</td>
<td>Sephadex</td>
</tr>
<tr>
<td>Particle diameter (µm)</td>
<td>200</td>
<td>175</td>
</tr>
<tr>
<td>Effective surface area (m²/g dry)</td>
<td>0.44</td>
<td>0.27</td>
</tr>
<tr>
<td>Relative density</td>
<td>1.03</td>
<td>1.04</td>
</tr>
<tr>
<td>Swelling volume (mL/g dry weight)</td>
<td>18</td>
<td>14</td>
</tr>
<tr>
<td>Surface modification</td>
<td>DEAE</td>
<td>Gelatine</td>
</tr>
</tbody>
</table>

Vero cells on Cytodex 1, stained with trypan blue
<table>
<thead>
<tr>
<th>Viruses produced in microcarrier cultures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenovirus</td>
</tr>
<tr>
<td>Bovine rhinotrachteritis</td>
</tr>
<tr>
<td>Endogenous C type</td>
</tr>
<tr>
<td>Equine rhinopneumonitis</td>
</tr>
<tr>
<td>Foot and mouth</td>
</tr>
<tr>
<td>Group B arboviruses</td>
</tr>
<tr>
<td>HAV</td>
</tr>
<tr>
<td>Herpes</td>
</tr>
<tr>
<td>Influenza</td>
</tr>
<tr>
<td>Japanese encephalitis</td>
</tr>
<tr>
<td>Marek’s</td>
</tr>
<tr>
<td>Papova virus</td>
</tr>
<tr>
<td>Polio</td>
</tr>
<tr>
<td>Polyoma</td>
</tr>
<tr>
<td>Pseudorabies</td>
</tr>
<tr>
<td>Rabies</td>
</tr>
<tr>
<td>RSV</td>
</tr>
<tr>
<td>Rous sarcoma</td>
</tr>
<tr>
<td>Rubella</td>
</tr>
<tr>
<td>Sendai</td>
</tr>
<tr>
<td>SV40</td>
</tr>
<tr>
<td>Sindbis</td>
</tr>
<tr>
<td>Small pox</td>
</tr>
<tr>
<td>Vaccinia</td>
</tr>
<tr>
<td>Vesicular stomatitis</td>
</tr>
</tbody>
</table>
Cell culture media and serum

Serum - Ensure quality, traceability and origin

Classical media

Animal origin free media

Complex media containing hydrolysates

Chemically defined media
The effect of cell culture media

Medium 1 Medium 2 Medium 3
Serum-free expansion of Vero cells

Cytodex™ 1 (DEAE surface)

No supplements

Supplemented with Soy peptone

Cytodex 3 (collagen surface)
The effect of medium supplementation

![Graph showing the effect of medium supplementation on cell concentration over time. The graph compares the cell concentration (in $\times 10^6$ cells/ml) between supplemented and non-supplemented conditions. The blue line represents the supplemented condition, which shows an increase over time, while the red line represents the non-supplemented condition, which remains relatively flat.]

- supplement

+ supplement
Scale up of Microcarrier cultures
Bioreactors – Fixed vs Disposable

Control and scalability

Stainless steel

WAVE

10L

XDR

2000L
Subcultivation – Scale up

- Wash culture
- Add Trypsin. Optimal concentration and time of incubation need to be tested
- Inhibit trypsin when 90% of cells are detached
- Easy Cytodex™ retention by using 100µm stainless steel sieve
Scale-Up

- Wash culture, add trypsin, extensive sampling to determine cell detachment
- At 90% detachment inhibit trypsin
- Minimise shear stress transfer by pressure overlay

Bead to bead transfer

Cytodex™ retention by 100 µm sieve

Transfer to 2000 L tank

Receiving tank containing fresh Cytodex

2000 L

400 L
Large scale vaccine production
Baxter Biosciences

EC GMP licensed BSL3 (Sept 2004)
20 million doses plant
Vero cells on Cytodex™ in protein free medium – 6000L scale

Presented at the conference „Influenza Vaccines for the world“, Vienna 2006
Thank you!

www.gelifesciences.com

GE, imagination at work, GE monogram, and Global Star are trademarks of General Electric Company.

ÄKTA, Biacore, Capto, Cytodex, HyClone, ReadyCircuit, ReadyToProcess, ULTA, WAVE Bioreactor, and Xcellerex are trademarks of GE Healthcare Company or one of its subsidiaries.

HyperFlask is a trademark of Corning. Pluronic is a trademark of BASF.

All goods and services are sold subject to the terms and conditions of sale of the company within GE Healthcare which supplies them. A copy of these terms and conditions is available on request. Contact your local GE Healthcare representative for the most current information.

GE Healthcare Bio-Sciences AB
Björkgatan 30
751 84 Uppsala
Sweden