The future of cell based vaccine production

Mats Lundgren, Customer Applications Director, GE Healthcare
Vaccine production technology trends

- Platform technologies applied where possible (e.g., cell expansion on microcarriers and purification by chromatography)
- Single-use technologies and automated solutions
- Updated cell substrates—from eggs and diploid cells to continuous cell lines
- Live viral vector production—need for efficient platforms
- Process economy modelling implemented early in process development
- Focus on analytical technologies driven by increased regulatory requirements
Vaccine production today

<table>
<thead>
<tr>
<th>Processes developed decades ago</th>
<th>Processes difficult to scale up</th>
<th>Unfavorable process economy</th>
<th>Increased regulatory requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old cell substrates or eggs</td>
<td>Centrifugation</td>
<td>Low yields</td>
<td>Open handling</td>
</tr>
<tr>
<td>Limited purification</td>
<td>Fixed installations</td>
<td>Long process times</td>
<td>Batch variability</td>
</tr>
<tr>
<td>Significant expertise required</td>
<td>Roller bottles</td>
<td>Labor-intense processes</td>
<td>Serum supplementation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dedicated facilities</td>
<td></td>
</tr>
</tbody>
</table>
Vaccine production tomorrow

<table>
<thead>
<tr>
<th>Processes developed decades ago</th>
<th>Processes difficult to scale up</th>
<th>Unfavorable process economy</th>
<th>Increased regulatory requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform cell lines</td>
<td>Scalable technologies enabled by, e.g., single-use technologies</td>
<td>Efficient and rational process design</td>
<td>Closed handling</td>
</tr>
<tr>
<td>Efficient purification</td>
<td></td>
<td></td>
<td>Quality by design (QbD)</td>
</tr>
<tr>
<td>based on chromatography</td>
<td></td>
<td></td>
<td>Chemically defined cell culture media</td>
</tr>
</tbody>
</table>
Cell culture and virus propagation
Cell substrates for vaccines

Production system
- YEAST
- CELLS
- EGGs

Vaccine type
- Attenuated
- Inactivated
- Subunit
- VLP

Infectious agent
- Viral
- Bacterial

Infectious agent
- B. anthracis
- V. cholerae
- S. typhi
- N. meningitidis
- S. pneumoniae
- B. pertussis
- C. tetani
- C. diphtheriae
- H. influenzae
- S. cerevisiae

Production system
- Sf9
- PER.C6™
- WI-38
- Vero
- MRC-5
- CECC
- MDCK

Vaccines
- CPS = conjugated polysaccharides
- PS = polysaccharides
- VLP = virus-like particle

CPS = conjugated polysaccharides, PS = polysaccharides, VLP = virus-like particle
40 vaccines still to be developed

Where would this trend lead?

Infectious agent

Vero, MRC-5, WI-38, MDCK, CECC

Production system

YEAST, CELLS, EGGS

Vaccine type

Attenuated, Inactivated, Subunit, VLP

Viral

Bacterial

CPS = conjugated polysaccharides, PS = polysaccharides, VLP = virus-like particle
Selecting a cell line for virus production

Cell substrate evolution from primary to diploid to continuous cell lines

Modern options: Vero, MDCK, EBx, AGE, PER.C6™...

Requirements

• Suitable for GMP production
• Good safety track record
• Animal-origin free media preferred
• Good virus propagation
• Broadly and highly permissive
• Scalable to high-volume production
Cell culture medium and serum

Serum—ensure quality, traceability, and origin

Classical medium
Animal-origin free media
Complex media containing hydrolysates
Chemically defined media
Scale-up of adherent and suspension cells

Adherent cells

- Cell growth is limited by surface area
- Need enzymatic passaging
- More complex scale-up
- Higher virus production/cell
- Microcarriers increase volumetric output by maximizing the surface to volume ratio for adherent cells

Suspension cells

- Cell growth is limited by cell concentration in medium
- Easier passage and scale-up
- Lower virus production/cell
Introduction to Cytodex™ 1 and 3 Gamma microcarriers

Delivered gamma-sterilized and ready to use. Supplied dry to save storage space and facilitate transportation.

Conventional process:
- Dry Cytodex
- Weigh in
- Swell in buffer
- Sterilize
 - Autoclave (small scale)
 - Bioreactor (large scale)
- Drain buffer
- Add cell culture medium

Simplified process:
- Cytodex Gamma packages for 10, 100, and 1000 L cultures
- Add to bioreactor
 - Add cell culture medium
Adenovirus vector
AV vaccine production process

Upstream
- WCB
- Shaker flask
- Seed train
 - 2–3 weeks
- Xcellerex™ XDR-10
- WVSS
- ReadyToProcess WAVE™ 25
- Virus production

Downstream
- Cell lysis
- DNA fragmentation
- Clarification
- Conc. and buffer exchange
- Capture
- Polishing
- Conc. and buffer exchange
- Sterile filtration

Analysis
- **Virus titer**
 - % infected cells: flow cytometry
- **Virus infectious titer**
 - TCID$_{50}$
 - Automated fluorescence microscopy
- **Total virus titer**
 - qPCR
 - Nanosight™
 - Biacore™ system
 - Amersham™ WB system
- **Host cell**
 - DNA: qPCR
 - Protein: ELISA
 - Protein pattern: Amersham WB system

TCID$_{50}$ = 50% tissue culture infective dose, WCB = working cell bank, WVSS = working viral seed stock
AdV productivity in CCM B (CDM4HEK293) vs E (competitor)

AdV5-GFP comparison cell culture media B and E

<table>
<thead>
<tr>
<th>MOI 1 (r1)</th>
<th>MOI 1 (r2)</th>
<th>MOI 10 (r1)</th>
<th>MOI 10 (r2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.9E+08</td>
<td>3.0E+07</td>
<td>6.3E+08</td>
<td>6.1E+08</td>
</tr>
<tr>
<td>3.8E+08</td>
<td>2.8E+07</td>
<td>4.8E+07</td>
<td>4.9E+07</td>
</tr>
</tbody>
</table>

GFP expression at TOH

TOI: 1 x 10^6 cells/mL

TOH: 42 h

HyClone™ CDM4HEK293 media

AdV = adenovirus
CCM = cell culture medium
GFP = green fluorescent protein
MOI = multiplicity of infection
TOI = time of infection
TOH = time of harvest
Consistent adenovirus production in single-use Xcellerex™ XDR-10 bioreactor system
Rotavirus
Rotavirus vaccines

• Common cause of diarrheal disease in young children
• 200 000 deaths in children under 5 years of age annually, majority in Africa and Asia (data estimated from 2013)

• Vaccines on the market: eg. Merck, GSK, Bharat and Lanzhou
• Limited efficacy in developing countries
• Live attenuated oral vaccines produced in Vero cells
• Vaccines produced by old technology in T-flasks / Roller bottles using animal derived components (serum and trypsin)
72 h post Cytodex inoculation

Time of harvest

Competitor medium

VaccineXpress medium
Rotavirus can be propagated on Cytodex 1 Gamma using VaccineXpress medium.

Rotavirus titer in Spinner flask cultivation:
- OptiProSFM: 0.8×10^5
- VaccineXpress: 8.5×10^5

Competitor medium

VaccineXpress medium

Rotavirus expression (IN Cell)
Virus purification
Clarification

Process flow

1. Cell culture
2. Harvest
3. Clarification
4. Primary purification
5. Secondary purification
6. Formulation

Available techniques

- **Filtration**
 - Normal flow
 - Tangential flow (TFF)—hollow fiber filters

- **Centrifugation**
Purification

Process flow

1. Cell culture
2. Harvest
3. Clarification
4. Primary purification
5. Secondary purification
6. Formulation

Available techniques

- TFF—hollow fiber filters
- Density gradient centrifugation
- Selective precipitation
- Chromatography
 - IEX, MM, AC, HIC, SEC
 - Resin format (packed bed)
 - Membrane format (capsule), ReadyToProcess™ Adsorber Q

AC = affinity chromatography, HIC = hydrophobic interaction chromatography, IEX = ion exchange chromatography, MM = multimodal chromatography, SEC = size exclusion chromatography
AV vaccine production process

Upstream
- WCB
- Shaker flask
- Seed train: 2–3 weeks
- Xcellerex™ XDR-10
- WVSS
- ReadyToProcess WAVE™ 25

Downstream
- Cell lysis
 - DNA fragmentation
- Clarification
- Conc. and buffer exchange
- Capture
- Polishing
- Conc. and buffer exchange
- Sterile filtration

Analysis
- **Virus titer**
 - % infected cells: flow cytometry
- **Virus infectious titer**
 - TCID\(_{50}\)
 - Automated fluorescence microscopy
- **Total virus titer**
 - qPCR
 - Nanosight™
 - Biacore™ system
 - Amersham™ WB system
- **Host cell**
 - DNA: qPCR
 - Protein: ELISA
 - Protein pattern: Amersham WB system

TCID\(_{50}\) = 50% tissue culture infective dose, WCB = working cell bank, WVSS = working viral seed stock
Core bead chromatography: host cell proteins and DNA fragments bind to the core and viruses stay in the void

Modern alternative to SEC

Easily scalable and suitable for single-use chromatography
Application examples core beads

Influenza
- Egg-based
- Cell-based

Dengue, Zika, and other flaviviruses

Lentivirus

Adenovirus

Cytomegolaviruse

Respiratory syncytial virus

Poxvirus vectors

Polysaccharide conjugates

VLPs, etc., dependent on size

VLPs = virus-like particles
Cost breakdown of process steps and cost simulation of process alternatives
Economical considerations in early development

| Litterature search | • Find unit operations for AV purification
| | • Define suitable running conditions |
| Process modeling in Biosolve™ | • Set up different process alternatives
| | • Investigate different production scales|
| Evaluation of results | • Identify economically feasible unit operations to evaluate experimentally |
| Process development | • Start to experimentally evaluate low cost alternatives
| | • Evaluate only high cost alternatives if needed for required purity |
Process alternatives

- **Upstream process**
 - Detergent

- **Nuclease treatment**
 - Clarification NFF

- **Sample conditioning**
 - TFF
 - ReadyToProcess Adsorber Q B/E
 - ReadyToProcess Adsorber Q FT
 - Capto Q ImpRes
 - ReadyToProcess Adsorber Q B/E
 - Capto Q ImpRes
 - ReadyToProcess Adsorber Q FT
 - Capto Q ImpRes
 - Nuclease treatment

- **Clarification NFF**
 - TFF
 - Capto™ Q ImpRes

- **TFF**
 - Q Sepharose™ XL
 - Sepharose 4 FF
 - TFF
 - Capto Core 700
 - TFF
 - ReadyToProcess Adsorber Q B/E
 - ReadyToProcess Adsorber Q FT
 - TFF
 - Capto Core 700
 - TFF
 - Capto Core 700
 - TFF

- **Capto Q ImpRes**
 - Capto Core 700
 - TFF
 - Capto Core 700
 - TFF

B/E = bind-elute mode, FT = flow-through mode, NFF = normal flow filtration,
Contributing cost factors
Evaluation of productivity for modernizing a vaccine process with a different purification technique
Study objectives

Evaluate the effect on productivity by replacing a SEC step with a core bead chromatography step in a vaccine process at different production scales.

SEC = size exclusion chromatography
Principle of SEC

- Excluded from pores
- Enter a fraction of the pores
- Enter all pores

Sample injection

- High molecular weight
- Intermediate molecular weight
- Low molecular weight

Equilibration

Absorbance

Column volume (CV)

SEC = size exclusion chromatography
Productivity for SEC and core bead chromatography

200-L scale

- Core bead chromatography, SS column
- Core bead chromatography, SU column
- Size exclusion chromatography, SS column

2000-L scale

- Core bead chromatography, SS column
- Core bead chromatography, SU column
- Size exclusion chromatography, SS column

HA = hemagglutinin, SEC = size exclusion chromatography, SS = stainless steel, SU = single-use
Conclusion

• Paradigm shift for vaccine production—from lab bench process to rational design incorporating process economy calculations early

• A combination of single-use membrane and resin technologies seems to yield beneficial economy overall

• Core bead technology can increase productivity as compared to SEC
End-to-end vaccine manufacturing solutions

Molecule design → Cell design and selection → Cell culture → Product recovery (2–3x) → Capture → Polishing → Drug substance → Drug product

- Vero cells grown on Cytodex™ microcarriers
- Seed train bioreactor (ReadyToProcess WAVE™ 25 system)
- Clarification (ReadyToProcess™ hollow fiber filters operated through the ÄKTA readyflux single-use filtration system)
- Final filtration (ReadyToProcess hollow fiber filters operated through the ÄKTA readyflux single-use filtration system)
- Chromatography (ReadyToProcess columns operated through the single-use ÄKTA™ ready chromatography system)

Fast Trak services

Virus production
- Culture medium (HyClone™ SFM4MegaVir)
- Production bioreactor (Xcellerex™ XDR systems)
Acknowledgement

Florence Vicaire
Günter Jagschies
Björn Lundgren

Rotavirus team
Christine Sund Lundström
Eva Blanck
Ann-Christin Magnusson
Acknowledgement – Adenovirus team

Gustaf Ahlén
Sara Häggblad-Sahlberg
Pelle Sjöholm
Anna Åkerblom
Magnus Bergman
Maria Soultsioti
Elisabeth Wallby
Åsa Hagner McWhirter
Eva Blanck
Åsa Lagerlöf
GE, the GE monogram, Amersham, ÄKTA, Biacore, Capto, Cytodex, HyClone, ReadyToProcess, ReadyToProcess WAVE, Sepharose, and Xcellerex are trademarks of General Electric Company.

BioSolve and associated logos are trademarks of Biopharm Services. Flublok is a trademark of Protein Science Corp. Flucelvax is a trademark of Seqirus UK Ltd. Nanosight is a trademark of Nanosight Ltd. PER.C6 is a trademark of Crucell Holland B.V. All other third party trademarks are the property of their respective owner.

© 2018 General Electric Company.

All goods and services are sold subject to the terms and conditions of sale of the company within GE Healthcare which supplies them. A copy of these terms and conditions is available on request. Contact your local GE Healthcare representative for the most current information.

For local office contact information, visit gelifesciences.com/contact

GE Healthcare Bio-Sciences AB
Björkgatan 30
751 84 Uppsala
Sweden