Module Outcomes

On completion of this module the participant should be able to:

- List the essential cGMP requirements for sterilisation validation – specifically autoclaves and hot air sterilisers/dry heat ovens
- List the IQ, OQ and PQ requirements for heat sterilisation processes
- Differentiate between two sterilisation approaches (overkill and bioburden)
- Calculate and use an Fo for autoclave sterilisation validation
- Interpret a basic print-off for a sterilisation process.
Module Topics

- How does heat sterilization work
- Critical process parameters and metrics
- Developing a validation process / cycle
- Bioburden reduction vs. overkill cycles
- Content of protocols and reports

Useful References

- ISPE Good Automated Manufacturing Practices (GAMP)
- BP Appendix XVIII Methods of Sterilisation - Monograph for Biological Indicators
- ANSI/AAMI ST79:2006 – Comprehensive guide to steam sterilisation and sterility assurance in health care facilities
- AAMI TIR 13:1997 Principles of industrial moist heat sterilization
Define Sterile (I.J. Pflug)

Sterile
Free from viable microorganisms.

Sterilisation
Any physical or chemical process which destroys all life forms, with special regard to microorganisms (including bacteria and sporogenous forms), and inactivates viruses. Therefore the terms "sterile" and "sterilisation", in a strictly biological sense, describe the absence or destruction of all viable microorganisms. In other words, they are absolute terms: an object or system is either "sterile" or "not sterile".

The destruction of a microbial population subjected to a sterilization process follows a geometrical progression – to be 100% certain the article is sterile it would require infinite sterilisation.

Sterility Assurance Level (SAL)
For practical purposes the probability of finding a non-sterile unit (PNSU = Probability of Non Sterile Unit) must therefore be lower than 10^{-6}.

Useful References

- PDA Technical Monograph 1 – Validation of Steam Sterilisation Cycles 2007
- PDA Technical Report 3, (TR3) Validation of Dry Heat Processes Used for Sterilization and Depyrogenation (under revision)
- USP <1035 > Biological Indicators
- USP <1211> Sterilisation and Sterility Assurance of Compendial Articles
Sterility is the absence of viable micro-organisms.

- **The sterility of a product cannot be guaranteed by testing;** it has to be assured by the application of a suitably validated production process.
- It is essential that the effect of the chosen sterilisation procedure on the product (including its final container or package) is investigated to ensure effectiveness and the integrity of the product and that the procedure is validated before being applied in practice.
- Revalidation is carried out whenever major changes in the sterilisation procedure, including changes in the load, take place.

Industry Rules - Terminal Sterilisation (BP/EP)

- Wherever possible, a process in which the product is sterilised in its final container (terminal sterilisation) is chosen.
- If terminal sterilisation is not possible, filtration through a bacteria-retentive filter or aseptic processing is used;
- Wherever possible, appropriate additional treatment of the product (for example, heating of the product) in its final container is applied.
- In all cases, the container and closure are required to maintain the sterility of the product throughout its shelf-life.
Heat Sterilisation Methods

- **Moist Heat (Steam)**
 - Air in autoclave chamber is displaced by saturated steam
 - Condensing water vapour acts as a conductor of heat

- **Dry Heat Oven or Tunnel**
 - Heated dry air is distributed throughout an oven or tunnel by convection or radiation

Why Are Autoclaves Essential?

- Easiest way to sterilise large volumes of heat tolerant materials.
 - More effective than dry heat (lower temperature / shorter time)
 - Not as messy as chemicals and more reliable
 - No need for radiation shielding etc.
- Once validated, simple indicators used to tell autoclaved and non autoclaved material apart – the temp/time/pressure trace is used to confirm sterilization occurred.
- Can deliver $> 10^{12}$ sterility assurance
Common Types of Autoclaves

- **Production Autoclave.**
 - Usually large
 - Loads one side (Grade C), unloads the other (Grade B)
 - Used to sterilize production equipment
 - May be used to terminally sterilize filled product (can have one opening)
 - If faulty, potential critical impact on sterile core or batch disposition

- **Microbiology Laboratory Autoclave**
 - May be large or small
 - Usually loads and unloads from same side - Sterilized items do not unload directly into production environment
 - Used to sterilize equipment as well as media. Also used to decontaminate materials before disposal

Autoclave Operating Mechanism

Steam enters the chamber jacket, passes through an operating valve and enters the rear of the chamber behind a baffle plate. It flows forward and down through the chamber and the load, exiting at the front bottom.

A pressure regulator maintains jacket and chamber pressure at a minimum of 15 psi, the pressure required for steam to reach 121°C (250°F).

Overpressure protection is provided by a safety valve.
Hows Does An Autoclave Sterilize?

- Steam held at elevated temperature and pressure for time is used to transfer moist heat.
- The steam condenses on a surface and releases energy.
- The energy splits open the cell wall.
- Heat acts to denature proteins, effectively killing all cells present.
- Effectiveness is reliant on saturated steam condensing.

Definitions: D-Value, Z-Value and F_0

- **What is the D value?**
 - refers to decimal reduction time - The time required at a certain temperature to kill 90% (e.g. reduce population by log 1) of the organisms being studied. Thus after an organism is reduced by 1 D, only 10% of the original organisms remain. Dependant on microbe and initial numbers. E. g D value of 1.5 means it takes 1.5 minutes to reduce 1 log (to 10%) @121oC. A Dvalue of 2.0 means more resistant while a Dvalue of 1min means less resistant.

- **What is a Z value?**
 - Refers to the temperature change required to produce a 1 log reduction in D value.
Definitions: D-Value, Z-Value and F_0

What is F_0?
- The number of minutes to kill a specified number of microbes with a Z value of 10°C at a temp of 121.1°C.
- Often confused with the time the chamber is held at elevated temperature and pressure but in practice is the same thing.
- F_0's accumulate as the sterilisation cycle progresses – very little accumulation below 112°C.

Overkill
- Kills many more microbes than would find on items typically autoclaved. Negates the need to test sample for bioload before running the cycle.
- Use a sterilisation time exceeding what is necessary to kill a large number of microbes. Negates the need to determine D value of microbe.
- Overkill is generally defined as a 12 log reduction in bioload

Monitoring of Sterilisation Processes

- **Biological measurements**
 - Required to demonstrate that sterilisation process was effective
- **Physical measurements**
 - Time, temperature, pressure, vacuum.
 - Required to calculate sterility assurance levels (SAL)
- **Chemical measurements**
 - Autoclave tape or other indicators such as Bowie Dick
Thermal Monitors - Thermocouples (HSA Guidance)

- The number of thermal monitors used (≥10) and their location in the chamber should be described. A diagram is helpful.
- Accuracy of thermocouples should be NMT ± 0.5°C.
- Thermocouples should be calibrated before and after a validation experiment at two temperatures: 0°C and 125°C.
- Any thermocouple that senses temperature more than 0.5°C away from the calibration temperature bath should be discarded. Stricter limits i.e., <0.5°C, may be imposed according to the user’s experience and expectations.
- Temperature recorders should be capable of printing temperature data in 0.1°C increments.

Biological Indicators (BIs)

- A characterized preparation of a specific microorganism that provides a defined and stable resistance to a specific sterilization process.
- Typically spore-forming bacteria
- Used to:
 - Assist in the development and establishment of a validated sterilization process for a particular article
 - Assist in the PQ of the sterilization equipment
 - Monitor established sterilization cycles
 - Periodically re-validate sterilization processes
 - Evaluate the capability of processes used to decontaminate isolators or aseptic clean-room environments.
Examples of Biological Indicators

<table>
<thead>
<tr>
<th>Sterilisation Method</th>
<th>Organism (Spore type)</th>
<th>Identification</th>
<th>No. Viable Organisms</th>
<th>D value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steam</td>
<td>Bacillus stearothermophilus</td>
<td>NCTC 10007</td>
<td>1.0×10⁶ to 5.0×10⁷ per unit</td>
<td>Typically 1.5 min to 2.5 min @ 121°C</td>
</tr>
<tr>
<td></td>
<td>Clostridium sporogenes</td>
<td>NCIB 8157</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bacillus subtilis spp</td>
<td>ATCC 7953</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry Heat</td>
<td>Bacillus subtilis</td>
<td>NCIB 8058</td>
<td>1.0×10⁶ to 5.0×10⁷ per unit</td>
<td>1 min to 3 min @ 160°C Typically 1.9 min @ 160°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATCC 9372</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiation</td>
<td>Bacillus pumilus (min. dose of 25kGy)</td>
<td>NCTC 824</td>
<td>>10⁷ - 10⁸ per indicator unit</td>
<td>~3 kGy (0.3 MRad)</td>
</tr>
<tr>
<td></td>
<td>Bacillus cereus (for higher dose levels)</td>
<td>NCIB 8982</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATCC 14884</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SSI C 1/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethylene Oxide</td>
<td>Bacillus subtilis, variety Niger</td>
<td>NCTC 10073</td>
<td>1.0×10⁶ to 5.0×10⁷ per unit</td>
<td>2.5 min to 5.8 min @ ETO 600mg/l 60% RH and 54°C Typically 3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATCC 9372</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filtration</td>
<td>Pseudomonas diminuta</td>
<td>ATCC 19146</td>
<td>recommend ≥10⁷</td>
<td>NA</td>
</tr>
</tbody>
</table>

Example Dvalues of Organisms

AVERAGE VALUES OF D AND Z FOR SOME REPRESENTATIVE MICROORGANISMS Wallhauser 1980

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>D₁₀₀</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clostridium botulinum</td>
<td>0.2</td>
<td>10</td>
</tr>
<tr>
<td>Bacillus stearothermophilus</td>
<td>2.0</td>
<td>6</td>
</tr>
<tr>
<td>Bacillus subtilis</td>
<td>0.5</td>
<td>10</td>
</tr>
<tr>
<td>Bacillus megaterium</td>
<td>0.04</td>
<td>7</td>
</tr>
<tr>
<td>Bacillus cereus</td>
<td>0.007</td>
<td>10</td>
</tr>
<tr>
<td>Clostridium sporogenes</td>
<td>0.8 - 1.4</td>
<td>13</td>
</tr>
<tr>
<td>Clostridium histolyticum</td>
<td>0.01</td>
<td>10</td>
</tr>
</tbody>
</table>
Calculation of Fo

In mathematical terms, \(F_0 \) is expressed as follows:

\[
F_0 = \Delta T \sum_{t=0}^{T} \frac{r^{t}}{z}
\]

where
- \(\Delta T \) = time interval between measurement of \(T \)
- \(T \) = temperature of the sterilized product at time \(t \)
- \(z \) = temperature coefficient, assumed to be equal to 10

If we assume a sterilization lasting 15 minutes, constantly at 121°C, we obtain:

\[
F_0 = 15 \times 10^{12} \times \log N_0 - \log N = 15 \times 10 - 5 \times 1 = 15 \text{ min} \text{ sature}
\]

Indeed according to the definition of \(F_0 \).

If we assume sterilization lasts 15 minutes, constantly at 111°C, we instead obtain:

\[
F_0 = 15 \times 10^{11} \times \frac{10}{12} \times 15 \times 10 = 10^{10}
\]

\[
F_0 = \frac{15}{10} = 1.5 \text{ min sature}
\]

Therefore, a 15-minute sterilization at 111°C is equivalent, in terms of lethal effect, to 1.5 minutes at 121°C; this can be easily expected if \(z=10 \).

F₀ Calculations – BP/EP

\[
F_0 = D_{121} \times (\log N_0 - \log N) = D_{121} \times \log \text{IF}
\]

- \(D_{121} \) = D-value of the reference spores at 121 °C,
- \(N_0 \) = initial number of viable micro-organisms,
- \(N \) = final number of viable micro-organisms,
- \(\text{IF} \) = inactivation factor.

\[
\text{IF} = \frac{N_0}{N} = 10^{\frac{t}{D}}
\]

- \(t \) = exposure time
- \(D \) = D-value of micro-organism in the exposure conditions.
Points to Note
1. $121.1 = F_0$ of 1 min
2. Below around 112 very little accumulated F_0s
3. Increase/decrease is exponential … slight changes have a big impact.
4. The F_0 value of a saturated steam sterilisation process is the lethality expressed in terms of the equivalent time in minutes at a temperature of 121 °C delivered by the process.

PNSU, SAL and Overkill

- Sterility assurance level (SAL) is the reciprocal of Probability of a Non-Sterile Unit (PNSU).
 - The purpose of a BI challenge is to establish that the biological lethality is equivalent to the physically determined F_0, generally measured by thermocouples.
 - $\text{SAL} = \frac{F_0}{D\text{value}}$
 - With a D_{10min} of 1.5 min and a F_0 of 18 min we have an 12 log reduction. If we started with 10^6 we would end up with 10^{-6} which is the PNSU so we have an SAL of 10^{12}

 - “Overkill” generally means that you develop a cycle that gives a complete kill of BIs with a N_0 of 10^6 and then you double that cycle – otherwise can use a reduced cycle approach – Overkill is really “over” overkill and only suitable for equipment.
Example Calculation of SAL

- Generally in sterilisation we are required to achieve an SAL of 10^6 (minimum) and often an additional 6 log reduction (overkill situation).

- For example if a material has a bioburden of 400cfu then to reduce the bioburden to 1 = log (400) = (2.60). This shows that only a 2.6 log reduction is needed to bring the population to 1 and therefore the total log reduction required for sterilisation with SAL of $10^6 = 2.6 + 6 = 8.60$ – to achieve this we need a total sterilisation time at 121°C with a D-value of 2.0 = 2.0 x 8.6 = 17.2 min.

- For BI challenge, with a starting population of 10^6 and a D-value of 2.0, to reduce the population to 10^{-6} we need 2.0 x 12 logs = 24 minutes at 121°C to achieve overkill conditions.

Critical parameters needed for successful sterilization

- Article wrapping – allow steam in and air out – dry at end
- Chamber load pattern – what goes where
- Air removal (steam displacement or vacuum)
- Moisture (saturated steam) introduced
- Pressure / vacuum conditions
- Temperature – enough to kill
- Cycle Time and “Dwell” time
- Contact with surfaces:
 - Packaging permeable to moist heat
 - Items designed to allow contact
 - Items designed to allow air removal
 - Items dry at the end
What Can Go Wrong?

Effective sterilization is dependant on:
- Initial bioload of incoming materials
- Microbe resistance to heat (D-value) of that bioburden
- Time the autoclave is held at a sterilizing temperature
- Ability of steam to penetrate items being sterilized

Steam Penetration:
As steam is used to transfer heat, tightly wrapped items, or long tubing may not be properly penetrated. Would represent worse case for validation.

Air Pockets:
Trapped air creates localized dry heat conditions – reducing lethality rates

The Problem of Air

- Pockets of trapped air result in localized dry heat conditions which reduces the SAL.
- Autoclaves without vacuum are considered "non-GMP"
- Air removal relies on
 - Vacuum pre-pulsing the chamber before introduction of steam – generally 3 - 4 times
 - Careful consideration of the load pattern and contents
- Known issues with air removal:
 - Extended length of transfer tubing
 - Filters mis-orientated to trap air
 - Tank valves closed off to prevent removal
 - Air inlet at end of the cycle must be sterilized via an air filter – filter must be periodically integrity tested.
Steam Supply Quality

- Expected to test steam quality regularly = WFI minus bioload.
- HTM-2010 (UK Standard) sets our requirements for steam quality wrt validation and monitoring.
- HSA Guidance states steam quality must be tested periodically to ensure that:
 - moist heat (rather than dry-heat) sterilising conditions are achieved;
 - superheating does not occur;
 - wet loads are avoided;
 - non-condensable gases is below 3.5%; and
 - mineral and organic impurities (including bacteria and pyrogens) are below specified maximum levels.

The three basic steam quality tests are the superheat test, dryness value and non-condensable gas tests.

Saturation Temperatures and Pressures for Steam

<table>
<thead>
<tr>
<th>Pressure (PSI)</th>
<th>Temperature °C</th>
<th>Temperature °F</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>109</td>
<td>228</td>
</tr>
<tr>
<td>10</td>
<td>115</td>
<td>240</td>
</tr>
<tr>
<td>15</td>
<td>121</td>
<td>250</td>
</tr>
<tr>
<td>20</td>
<td>126</td>
<td>259</td>
</tr>
<tr>
<td>25</td>
<td>130</td>
<td>267</td>
</tr>
<tr>
<td>30</td>
<td>135</td>
<td>275</td>
</tr>
</tbody>
</table>
Operating Characteristics of Steam Sterilisers

- Air Removal Options
 - **Gravity displacement:**
 - Steam enters and displaces the residual air through an open vent
 - **Vacuum air removal:**
 - Air is removed with a mechanical pump prior to dwell time.

- Pressure is needed to achieve high temperatures (steam)

- Must release pressure slowly for liquids (slow exhaust)

- Items must be allowed to dry before removal from chamber

Example time/temperature/pressure Print-off.
Sterilisation Cycle Development

- Two basic approaches are employed to develop sterilisation cycles for moist heat processes:
 - Overkill, used for equipment and for heat stable products, and,
 - Probability of Survival (Bioburden Approach), used for heat sensitive products.
- Need to specify cycle conditions
 - Heat lability, or not, of the articles being sterilised
 - Pre-vac. conditions
 - Time/temperature and Fo requirements
 - Load patterns and orientations
 - Wrapping
 - Slow or fast exhaust

Cycle Development - Overkill Method

- Assumes all bioburden to be the biological indicator species - worst case assumption.
- Requires a 12 log reduction of a resistant biological indicator with a known D-value of > 1 min.
- End point is SAL > 10^6 (In reality much higher)
- Consider a safety margin where the product demonstrates susceptibility for microbial growth and can handle extended heat exposure.
- Bioburden and resistance data are not required to determine the required F_0 values.
- Cycle parameters are chosen to ensure that the coldest point within the load receives an F_0 that will provide, at a minimum, the SAL level chosen for the cycle - typically F_0 ≥ 12
- Overkill is always run with equipment loads
Cycle Development - Probability of Survival Method

- Used for semi heat labile product,
- The sterilisation process is validated to achieve the destruction of a pre-sterilisation bioburden to a level of at least 10^9, with a minimum safety factor of an additional six-log reduction (1×10^6) or SAL of 10^6,
- Requires D-value of bioburden to be measured and monitored.

Cycle Development - Demonstration of Sterility Assurance

- For both approaches, must establish the cycle needed to provide the minimum F_0 values.
- Must do heat distribution and heat penetration studies to determine the amount of heat delivered to the slowest heating unit in each load (the “cold spot”)
- Validation studies must show that each unit receives the minimum F_0 value to achieve the SAL.
- Must evaluate each load pattern:
 - Thermometrics
 - Lethality
Cycle Development - Demonstration of Sterility Assurance

- For lethality studies, use a defined resistant challenge organism such as *Geobacillus stearothermophilus* exposed to the product being validated.
- On establishment of the BI’s resistance in a given product, provided the D-values of any potential bioburden or environmental isolates exhibits a lower D-value than the reference BI, it is safe to assume that the cycle will exhibit sufficient lethality overall.
- Problem is that it is very difficult to experimentally establish D-values, so in practice this is not done.

Wrapping Articles and Load Descriptions

Must develop equipment wrapping program

- Must completely seal the wrap
- Generally 2 - 3 sealed layers
- Overwrapped articles retain moisture
- Must include BI and T/C when validating article
- Must specify load in autoclave
 - Number and type of articles
 - Specific location (diagram / photo)
 - Load pattern must appear in operating procedure
Steam Sterilizers and Validation

- Kill microbes with a very high degree of assurance even under worst case conditions
- Protect the contents of the load from deterioration or instability
- Can deliver more F_0s (heat) for equipment loads than for product

It’s all about the bugs!

Validation Approach and Sequences

- **DQ:** Has the item been specified correctly?
- **IQ:** does equipment meet the URS requirements? Is everything that was on the box, in the box? Is the unit installed properly. Are support programs in place for ongoing operation of A/C?
- **OQ:** does the A/C operate properly? Does the unit hold temp and pressure correctly?
- **PQ:** validation of autoclave cycles and loading patterns – need to show sterilization.
Autoclave Validation Principles

- The basic principles for validation of a heat sterilizing process are:
 - Cycle development and description of load patterns are prerequisites
 - Must understand the cold spot(s)
 - Must use BIs to demonstrate lethality
 - Must use thermometrics/ thermocouples
 - Can do time/temperature or F_o approach for control
 - Calibrate thermocouples both pre and again post
 - Must include “worst case” conditions
 - Maximum and minimum loads/ patterns
 - One run of reduced cycle time / temperature
 - Cold start for at least one of three runs per load pattern

Overview of Sterilisation Validation
(Scope of Works)

- URS + Functional Spec’n + Design Spec’n = DQ
- Load Patterns + Controllers = Build
- Cycle Development + Validate and Calibrate = FAT, SAT and IQ Protocols
- Document Cycles & Controls + OQ - Empty & Full Chamber = PQ - Penetration Validate Lethality
- Thermo. + Lethality
- Steam Fluids/Air
Validating Load Patterns
(Why are load patterns important?)

- Sterilization relies on steam penetration. Need to validate each set load patterns
- Very important to show what you put in an autoclave comes out sterile consistently
- Bis: When to use spore strips and when to use solutions

How to validate?
- 3x successful runs each loading pattern
- Place BI with each item in worse case spot.
- Place thermocouple next to BI, but not touching item.
- How often to re qualify? – annually expected
- Loading patterns should be documented and adhered to.
- Worse case validated – can use less but not more equipment

Pre-Qualification Activities -
GMP DQ Considerations

- Materials of construction proposed and the quality of finish
- Clean-ability of the design;
- Air breaks on drain lines;
- Location of drains;
- Method by which the chamber maintains leak tight conditions to prevent back flow of non-sterilised air into the chamber;
- Interlocking of doors;
- The door type (swing or lift);
- A microbial retentive vent filter with provision for in-situ sterilization and integrity testing,
- Able to insert validation sensors through entry port
- Controller / HMI features – security and configuring / prints/downloads
- Alarm features
- Nominated cycles
Installation Qualification (IQ)

- Confirm item has been built according to design specifications
- Materials of construction are suitable for GMP standards.
- The vendor must provide evidence of a satisfactory completion Factory Acceptance Test (FAT) showing that the item meets fabrication, functional and preliminary performance standards prior to shipment.
- The item is installed in a safe manner and hooked up to the appropriately qualified services (water, steam, air) and drainage.
- The statutory documentation for the pressure vessel design, plumbing and electrical connections have been provided.
- Should do an empty chamber map.
- A typical acceptable range of temperature in the empty chamber is ±1°C when the chamber temperature is not less than 121°C.

Autoclave - Installation Qualification (Critical Services)

- Steam supply to the autoclave chamber is qualified as WFI grade or “clean” steam.
- Clean steam is produced using Water for Injection (WFI) and is tested to the relevant WFI pharmacopoeial requirements – except for bioburden.
- Need sampling ports to collect the steam
- The clean steam generator must be validated and have sufficient capacity to meet the peak loads.
- The autoclave has a sterilisable vent filter in place that is capable of being integrity tested.
Autoclave - Operational Qualification

- Empty Chamber Thermal Mapping
 - Verify the heat distribution pattern in an empty chamber
 - Repeat annually to re-confirm operation of autoclave
 - Conduct cold start and hot start

- Controller Reliability
 - Ensure each step in the PLC is in the correct sequence and is repeatable. Failure modes should include failure and restart of the critical services and include:
 - Electrical power loss,
 - Loss of equipment or instrument compressed air loss,
 - Service loss: jacket or pure steam, cooling water, vacuum,
 - Other critical service.

Operational Qualification – Control Systems

- Control System Verification:
 - Sterile Door Security,
 - Program Change/Alteration Security,
 - Cycle program Back Up and Recovery,
 - Calculation of \(F_0 \) Accuracy,
 - Independence of Controlling and Monitoring Thermocouples,
 - Accuracy of Printout Record.

- Alarm and display indicators.
 - Ensure these indicate the correct status of the autoclave for each cycle,

- Door Interlock
 - must work correctly not allowing access during the cycle,

- Gasket Integrity/ Leak testing
 - Verify positive/negative pressure seal of all door gaskets.
 - Bowie Dick Test to demonstrate air removal from chamber
Operational Qualification

- The operation of the autoclave shall be evaluated according to a written OQ protocol.
 - Empty chamber temperature distribution studies,
 - Full and minimum load chamber heat distribution studies**.
 - A minimum of three replicate cycles should be carried out for chamber heat distribution studies. An analysis of the data should identify:
 - The lowest temperature in the chamber (i.e. cold spot(s)) where a measurable temperature distribution exists,
 - Any movement of the "cold spot" between the repeats of the same cycle or between cycle types (i.e. empty, minimum and full loads).

**Could be done instead as part of PQ.

Autoclave Performance Qualification

- PQ: validation of autoclave cycles and loading patterns.
- What SAL do you need?
 - Need to show a 10^6 or 10^{12} reduction of microbes.
- What is your starting bioload?
 - Spore strips have $>10^6$ CFU.
- What is the microbe’s D value?
 - For *Geobacillus stearothermophilus*, this is around 1.5 – 2.0
 - Must use physical, chemical and biological indicators (Bis).
PQ of Autoclave

- **Heat Distribution Study** – how does steam circulate around the contents? Is it consistent? Can be done with thermocouples only.

- **Heat Penetration Study** – how quickly does the heat penetrate the item or liquid.
 - Maximum Loads
 - Minimum Loads – what does this mean?

- **Worst Case Conditions**
 - Reduced time and temperature
 - If overkill needed 50% of cycle to show $>10^{-6}$ – production cycle is doubled to achieve 12 log reduction.

Performance Qualification (Heat Penetration Studies)

- **Heat penetration studies** – carried out for each load configuration for each nominated cycle with the aim to:
 - Identify any cold spots within the load;
 - Measure the accumulated F_o for each challenge location within the nominated load.

- Microbiological challenge (lethality) studies carried out as part of heat penetration studies (reduced exposure).

- Product degradation (maximum exposure)

- Load “lag time” or come up determination – look for slowest to heat location

- BI is Geobacillus stearothermophilus with a certified D-value between 1.5 and 2.0 and a verified spore count of between 5×10^5 and 5×10^6.

Load Equilibration Time

- Equilibration time, that is, the time for the penetration thermocouples to show the same temperature as the chamber.
- Ideally equilibration time should be less than 15 seconds for chambers less than 800 litres and 30 seconds for larger chambers.
- If the equilibration time is exceeded it diagnoses:
 - Inadequate air removal OR
 - Inadequate steam penetration OR
 - Excessive non-condensable gases

Acceptance Criteria PQ

- The steriliser must meet current GMP Standards for Installation and Operation,
- The differential between the hottest and coldest thermocouple at any time during the dwell phase should not exceed 2°C,
- Minimum of three acceptable consecutive sterilisation runs per load pattern – for a full (maximum) load and a minimum load pattern,
- The sterilisation hold time for the reference thermocouple(s) must not be less than the nominated cycle sterilisation hold time,
- The reference probe must be within -0.5°C to +0.5°C of the nominated cycle conditions.
Acceptance Criteria for PQ

- The general thermal profiles of the vacuum, heat-up and sterilisation hold phases for all thermocouples must be defined for each of the studies to provide a basis for the review of the autoclaves physical performance.
- Meets all minimum F_0 requirements for the nominated load conditions,
- All thermocouples should achieve a SAL value nominated for the cycle with a D-value of 1.0 of the BI in water. (If alternatives are used justification should be provided),
- All biological indicators (BIs) are:
 - rendered non-viable when incubated (i.e. there must be no growth from the recovered spore inoculum),
 - For a Reduced Cycle provide the cycle minimum SAL when calculated back to the full cycle time.
 - F_0 for a cycle with complete lethality and for a cycle with survivors.

Example Acceptance Criteria (Equipment Load)

- Four pulses of vacuum down to 25 kPa
- 3 positive pulses of steam to 160 kPa
- Sterilisation set-point temperature 124°C for lowest T/C
- All T/Cs within range 124°C -126°C during dwell
- T/C does not fluctuate by > 1°C during dwell
- Equilibration time < 60 seconds
- Sterilisation dwell time ≥15 minutes
- Accumulate ≥ 30 F_0
- All Bis show no growth
- Post sterilisation drying time 20 minutes – load dry
- Leak rate tests remain within specification
- At least 9 of 10 T/Cs remain within calibration
Final Validation Report

Ensure documentation has been completed and approved in line with the site quality procedures,

Ensure an adequate training program has been performed to ensure operators manage the process consistently.

Summarise all validation activities in a Validation Summary Report.

- Report against the Validation Protocol.
- Close out of all Deviations
- Validation Certification.
- Ensure system is under Change Control.
Annual Re-validation Example (Include the following tests)

1. Chamber leak rate test
2. Air removal and steam penetration test (Bowie Dick Test)
3. Heat distribution studies for empty chamber (1x)
4. Heat penetration studies for standard production loads:
 - Load #1 Filling Components
 - Load #2 Filling Machine Cap Components
 - Load #3 Filling Machine Stopper Components
5. Biological challenge testing for standard loads
6. Steam condensate quality test
7. Planned preventative maintenance schedule, including instrument calibration

“Three consecutive cycles shall be tested for each load configuration to demonstrate consistency of autoclave performance”.

Routine Monitoring of Autoclaves

- Sequential number runs and a running log
- Must double sign prints to verify cycle conditions met
- Record conditions met and any alarms activated
- Chamber Leak Rate Test (weekly)
- Physical indicator on each item in each load
- Bowie Dick Test (Optional)
- BIs are not routinely included in the cycle
- Reliance on controlling probe (directly correlated to the worst case (coldest) location for the validation probe
- For product loads usual ot probe a number of dummy vials in the load for added assurance.
Auditor Considerations
What do GMP auditors look for in an audit

- Was re-validation conducted in time frame?
- Focus on PQ primarily but interest in IQ/OQ for newer autoclaves
- Coolest and warmest positions clearly stated in validation report?
- Preventative maintenance program, SOPS, leak rate test data?
- Cycle time / Fo – is it sufficient for tested D values?
- Was validation equipment within calibration (pre and post use))
- Traces for validation and most recent cycles – consistency?
- Are vacuum cycles used appropriately?
- Is anything thing not listed on the loading pattern present in the autoclave? Enough room for steam to circulate through chamber?
- Deviations from protocols. Are conclusions valid and justified?
- Can site demonstrate terminally sterilised product is stable?

Validation of Dry Heat Sterilisation Processes

Temperature and flow conditions in the sterilisation tunnel
Minimum conditions of 160 °C for at least 2 hours for **sterilisation**. (Other combinations of time and temperature may be used provided that it has been satisfactorily demonstrated that the process chosen delivers an adequate and reproducible level of lethality when operated routinely within the established tolerances.)

Dry heat sterilisation is carried out in an oven equipped with forced air circulation or other equipment specially designed for the purpose.

The steriliser is loaded in such a way that a uniform temperature is achieved throughout the load. Knowledge of the temperature within the steriliser during the sterilisation procedure is usually obtained by means of temperature-sensing elements inserted into representative containers together with additional elements at the previously established coolest part of the loaded steriliser. The temperature throughout each cycle is suitably recorded.

Depyrogenation of Glassware

Dry heat is used for **depyrogenation** purposes and results in complete destruction of micro-organisms.

It is accepted that validation of depyrogenation means also SALs much greater than 10^{-6}.

Dry heat at temperatures greater than 220°C is frequently used for sterilisation and depyrogenation of glassware. In this case demonstration of a 3-log reduction in heat resistant endotoxin can be used as a replacement for biological indicators. (BP/EP)

Spores of Bacillus subtilis (for example, var. niger ATCC 9372, NCIMB 8058 or CIP 77.18) are recommended as biological indicators.
Example of Depyrogenation Cycle Description

<table>
<thead>
<tr>
<th>Cycle phase description</th>
<th>Set-point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dehumidifying Rate:</td>
<td>6.0°C/min</td>
</tr>
<tr>
<td>Dehumidifying Time:</td>
<td>45 minutes</td>
</tr>
<tr>
<td>Dehumidifying Temperature:</td>
<td>120°C</td>
</tr>
<tr>
<td>Exposure Rate:</td>
<td>5.0°C/min</td>
</tr>
<tr>
<td>Exposure Time:</td>
<td>195 min</td>
</tr>
<tr>
<td>Exposure Temperature:</td>
<td>245°C</td>
</tr>
<tr>
<td>Cool Down Rate:</td>
<td>2.0°C/min</td>
</tr>
<tr>
<td>Cool Down Temperature:</td>
<td>50°C</td>
</tr>
</tbody>
</table>

Also need
• Load Pattern Description
• Location of T/Cs throughout the chamber
• Cycle ranges for parameters

Installation Qualification

- Calibration of monitoring devices
- Preventative Maintenance program developed
- All filters are listed with the following information
 - identification
 - type
 - size
 - change frequency
 - air capacity
 - flow rate
 - integrity testing requirements
 - the air downstream from the filter should be tested for total and viable particulates to ensure the filters do not shed or leak particles
Operational Qualification

- PLC Reliability
- Blower Rotation - verify RPM and correct direction
- Heater Elements integral
- Air flow rate throughout the chamber
- HEPA filter installation integrity (inlet and exhaust) in cold condition
- Chamber non-viable particle monitoring - Grade A in cold condition
- Room Balance – chamber positive ot room at all times

Operational Qualification

- **For Ovens:**
 - Door interlocks
 - Gasket integrity

- **For Tunnels:**
 - Belt velocity and chart recorder speed calibrated

- Empty chamber heat distribution profile
 - Temperature profile – wall and chamber
 - Minimum of 3 studies
 - Record all critical process parameters
Performance Qualification for Depyrogenation

- Expected to apply endotoxin to the inside of glass vials
- Techniques and methods for recovering and testing endotoxin must be validated.
- Should recover a minimum of 50% of applied endotoxin from glass surfaces.
- Recovery studies should be performed at the level of expected endotoxin.
- Need to challenge with >10,000 Endotoxin Units (EUs)
- Acceptance criteria is > 3 log reduction demonstrated on 3 consecutive runs for each load pattern.

Performance Qualification

- Loaded chamber heat distribution
- Loaded chamber heat penetration (min and max load patterns)
- Biovalidation
 - Sterilisation cycles only
- Depyrogenation verification
 - Endotoxin challenge studies must indicate at least a 3-log reduction for all locations for all runs
USP <1211>

Dry-Heat Sterilization/Depyrogenation

- A dry-heat sterilization/depyrogenation system is supplied with heated, HEPA filtered air, distributed uniformly throughout the unit by convection or radiation and employing a blower system with devices for sensing, monitoring, and controlling all critical parameters.

- A typical acceptable range in temperature in the empty chamber is $\pm 15^\circ$C when the unit is operating at not less than 250$^\circ$C.
Example Acceptance Criteria for HAO

Cycle Conditions
Must meet the nominated ranges of the cycle conditions

Thermometrics
- All thermocouple locations shall indicate temperatures continuously in excess of 220°C for a period of at least 2 hours 15 minutes, during the exposure phase of the cycle.
- The timing of the exposure phase of the cycle starts from the slowest to heat thermocouple reaching 220°C and finishes with the fastest to cool thermocouple falling below 220°C.

“Pyrometrics” - > 3 log reduction

Maintaining the Validated State
(Annual Routine Re-validation)

- Routine requalification program containing at least:
 - Annual requalification of the sterilisation process (for example, heat distribution on representative load(s), determination of min. F_0 values), at least annually.
 - Preventive maintenance program giving the scheduled maintenance measures required, SOP's for their performance, responsibilities, requirements for documentation.
 - Change control procedure specifying under what circumstances a re-validation is needed e.g repairs.
Steve Williams,
Director, CBE Pty Ltd
www.cbe-ap.com.au
☎ +61(0)417116476
✉️ steve.williams@cbe-ap.com.au