ICH Q10
Pharmaceutical Quality System (PQS)

© CBE Pty Ltd

Introduction

PQS - Module Outcomes

On completion of this module the participant should be able to:

- Interpret ICH Q10 expectations
- Develop a Quality Manual (QM) template and Quality Policies (POL)
- Design a pharmaceutical quality system using the QM template
- Strengthen GMP compliance systems
PQS Module Topics

- Basics of Quality and Compliance
- How does a Pharmaceutical Quality System fit together? – ICH Q10
- Deviations
- CAPA and Continuous Improvement

Increasing Industry Complexity
Major International Codes of GMP

- EU Guide to Good Manufacturing Practices (Eudralex Ch 4)
- World Health Organisation (WHO) c GMPs
- United States - FDA CFRs Part 21
 - CFR 210/211 for Drugs and Biologics - current GMPs
 - CFR 820 Quality Systems for Medical Devices - current GMPs
- ICH Q7 GMP for Active Pharmaceutical Ingredients
- Canadian cGMP (aligned with PICs)
- ISO 13485 : 2003 - Medical Devices
- ICH Guidance Documents – Technical Standards

Some Useful Reference Documents

- EU/PICs/TGA cGMPs – Chapter 1 – Quality Management
- ICH Q10 - Pharmaceutical Quality System
- ICH Q8 – Pharmaceutical Product Development
- ICH Q9 - Risk Management in Pharmaceuticals
- FDA Quality Systems Approach to Pharmaceutical CGMP Regulations (9/2006)
- GHTF - GHTF/SG3/N15R8 - Implementation of risk management within a Quality Management System
Significant Changes
40 Year History of Pharmaceutical Quality Management

- Quality Control 1972
- Sterile Validation 1975
- Quality Assurance 1975
- General Validation 1980s
- Quality Management 1990s
- Risk Management 2004+
- PQS – ICH Q8/Q9/Q10

Quality Control and Sampling

- Supplier
 - Inward Goods QC
 - QA Release
 - Finished Product QC
 - Customer

- Unit Op. #1
- Unit Op. #2

Sampling Plan
Lot Size = 1000
Sample size = 20 (2%)
Quality and Compliance

- **Quality refers to:**
 - **Product Quality** – meeting agreed specifications
 - **Quality Systems** – planned and deployed processes (systems) used to monitor, report and take corrective actions

- **GMP Compliance refers to:**
 - Identification, documentation and deployment of GMP obligations
 - Ongoing verification that GMP obligations are being met, or not.

An Overview of ICH Q10
Pharmaceutical Quality System
ICH Q10 - Pharmaceutical Quality System

- Based on ISO 9000/ISO13485/CFR 820 systems model
- Compliments ICH Q8 and ICH Q9
- Applies across the product life-cycle
- Consistent with GMPs - not intended to add new expectations to regulations and compliance
- Applies to APIs, drug products and biotechnology
- Strengthens the link between product development and manufacturing activities

Pharmaceutical Quality System, Quality Assurance, GMP and Quality Control

- Quality by Design (ICH Q8)
- Quality Assurance
- Good Manufacturing Practices
- Quality Control
- Quality Management
- Pharmaceutical Quality System (ICH Q10)
- Supply  Manufacturing  Distribution  Customers
ICH Q10 - Pharmaceutical Quality System

A Hierarchy QMS/GMP Documentation
Expectation of Skills and Knowledge Development of Personnel

- **Quality Knowledge**
- **GMP Knowledge**
- **Product and Process Knowledge (Skills Competency)**
- **GMP Behaviour (Minimising Human Error)**

Training Manuals, Records and Competency Assessments

FDA Six Control Systems – Inspection 7356.002

- **Production System**
 - Batch compounding, dosage form production,
 - In-process sampling and testing,
 - Process validation.
 - Master batch records and manufacturing procedures.

- **Material System**
 - Control of finished products, components, water, gases, containers and closures.
 - Validation of computer inventory control
 - Drug storage, distribution controls, records.

- **Equipment / Facilities**
 - Buildings and facilities & maintenance
 - Equipment qualifications (IQ/OQ).
 - Equipment calibration;
 - Cleaning and validation of cleaning processes.
 - Utilities - HVAC, gases, steam and water

- **Package / Label System**
 - Packaging and labeling operations & controls
 - Label examination and usage,
 - Label storage and issuance,
 - Validation of these operations.

- **Laboratory System**
 - Laboratory procedures,
 - Testing, analytical methods development
 - Method validation or verification,
 - Stability program.
How does a Quality System Fit Together?

- Training
- Change Control
- Document Control
- Validation
- Production Control
- Supplier Assurance
- Internal Audits
- External Audits
- Regulatory

CAPA

- Incidents & Deviations
- Quality Control
- Lab OOS
- Management Review
- Annual Product Review
- Complaints & Recall
- Pharmacovigilance

Monitoring & Trend Analysis

"Linkage" of the QMS system elements

- Each of the major elements are **inter-linked** to other elements
- Elements either drive or feed others or vice versa
- Linkage of related elements is critical to quality management oversight
 - Without strong linkage identification of problem root cause is difficult
 - With linkages, problems and root causes can be traced through the linked system
- Linkage enables "escalation" of significant issues
ICH Q10 - Some Important Principles

- The size and complexity of the company’s activities should be taken into consideration when developing a new pharmaceutical quality system or modifying an existing one.

- While some aspects of the pharmaceutical quality system can be company-wide and others site-specific, the effectiveness of the implementation of the pharmaceutical quality system is normally demonstrated at the site level.

Integration of PQS and GMP Elements in the Quality System

PQS
- Knowledge Management, Training and Education
- Monitoring Systems
- Change Management
- CAPA & Improvement
- Management Review and Responsibility
- Quality Planning & Resources
- Process Performance and Product Quality Monitoring System

GMP
- Quality Management/Quality Assurance System.
- Facilities and Equipment System.
- Materials System.
- Production System
- Packaging and Labeling System
- Laboratory Control System
PQS Enablers
Quality Risk Management (QRM)

- **Quality risk management**, in line with ICH Q9, provides an essential component of the Quality System.
- QRM enables both effective and efficient practices.
- Application of QRM ensures the quality system is efficient.
- Provides a systematic approach to escalating and prioritising significant events.

PQS Enablers - Knowledge Management

- **Knowledge management** means the systematic accumulation of information concerning products so that this knowledge can be leveraged in the future.

- **Knowledge** can be stored in systems such as:
 - Quality Records, including testing, stability studies and reports
 - Registration Dossiers
 - Contracts and Technical Agreements
 - Validation Protocol and Reports
 - Marketplace Events (Complaints, Recalls, Adverse Events etc.)
 - Annual Product Quality Reviews (PQRs)
 - Process control, significant deviations and changes.
ICH Q10 – Pharmaceutical Quality Manual

• A Quality Manual or equivalent documentation approach should be established and should contain the description of the pharmaceutical quality system.

• The description should include:
 i) The quality policy
 ii) The scope of the pharmaceutical quality system.
 iii) Identification of the processes within the pharmaceutical quality system, as well as their sequences, linkages and inter-dependencies.

• Process maps and flow charts can be useful tools to facilitate depicting these in a visual manner.

Example Chapters of a Quality Manual

- MANAGEMENT REVIEW AND RESPONSIBILITY
- DESCRIPTION OF THE QUALITY SYSTEM
- QUALITY PLANNING AND RESOURCE MANAGEMENT
- TRAINING AND EDUCATION
- PRODUCT DEVELOPMENT AND PRODUCT REGISTRATION
- QUALITY ASSURANCE AND COMPLIANCE PROGRAMS
- MONITORING PROGRAMS
 • CAPA / QUALITY AUDITS / PRODUCT QUALITY REVIEWS
 • MARKETPLACE MONITORING: COMPLAINTS AND PHARMACOVIGILANCE PROGRAMS
- QUALITY RISK MANAGEMENT
- KNOWLEDGE MANAGEMENT
Example Chapters of a Quality Manual

- MATERIAL CONTROL SYSTEM:
 - SUPPLY CHAIN INTEGRITY AND SUPPLIER ASSURANCE

- PRODUCTION SYSTEM
 - PRODUCT DEVELOPMENT, TECHNOLOGY TRANSFER AND MASTER INSTRUCTIONS
 - PROCESS PERFORMANCE AND PRODUCT QUALITY MONITORING SYSTEM
 - PROCESS VALIDATION
 - PACKAGING AND LABELLING
 - DEVIATIONS, INVESTIGATIONS AND NON-COMFORMING PRODUCT

- LABORATORY CONTROL SYSTEM

- CHANGE MANAGEMENT / VALIDATION

- FACILITIES AND EQUIPMENT SYSTEM / CLEANING/ CONTAMINATION CONTROL AND COMPUTERISED SYSTEMS

PQS Objectives

- Set objectives and clear performance metrics;
 - Objectives are reviewed annually
 - Metrics are measured, time-related and indicate the level of performance required;
 - Metrics are reviewed regularly;
- Define how compliance obligations are embedded in operational practices and procedures.
- Address processes for identifying, reporting and responding to compliance failures.
FDA View on Quality Metrics

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lot Acceptance Rate</td>
<td>Number of lots rejected in a year / number of lots produced</td>
</tr>
<tr>
<td>Right First Time Rate</td>
<td>Number of deviations / lot</td>
</tr>
<tr>
<td>Complaint Rate</td>
<td>Number valid complaints/number of lots released per year</td>
</tr>
<tr>
<td>Invalidated (OOS) Rate</td>
<td>Number of OOS test results invalidated /tests performed</td>
</tr>
<tr>
<td>Annual Product Review (APR) on Time Rate</td>
<td>Number of APRs generated within 30 days of annual due date</td>
</tr>
<tr>
<td>Management Engagement</td>
<td>Most senior manager that signed each annual product review</td>
</tr>
<tr>
<td>Process capability or performance index</td>
<td>Whether performed for each critical quality attribute as part of that product's APR.</td>
</tr>
<tr>
<td>Corrective and Preventative Action (CAPA) Rate</td>
<td>Number of CAPAs that were initiated due to an APR, divided by the total number of APRs generated.</td>
</tr>
</tbody>
</table>

ICH Q10 – Management Review

- Senior management should be responsible for pharmaceutical quality system governance through management review to ensure its continuing suitability and effectiveness.

- Management should assess the conclusions of periodic reviews of process performance and product quality and of the pharmaceutical quality system.
Commitment to Quality by Management

- Governing Body and CEO are engaged
- The Quality Policy is aligned with business objectives
- Compliance and Quality obligations are embedded in position responsibilities
- Resources are allocated to Quality / Compliance
- Top level engagement in compliance/quality metrics and reviews

PQS, Compliance and Quality Organisation

- Assign compliance and quality responsibilities to individual managers – set out in position descriptions
- Ensure all management “walk the talk”
- Appoint a senior Compliance/ Quality executive:
 - direct access to the Board/CEO
 - Access to expert advice (internal and external)
 - Establish compliance/quality objectives and KPIs
- Ensure compliance/quality function has the authority to act
ICH Q10 - Management Reviews – should include

- A timely and effective escalation process to senior management;
- Measures of customer satisfaction - complaints and recalls;
- Conclusions of process performance and product quality monitoring;
- The effectiveness of process and product changes including those arising from CAPA;
- Any follow-up actions from previous reviews;

Management Reviews, Trend Analysis and Feedback

- Risk Assessment
- PQRs Conducted
- Report KPIs and Quality Metrics
- Verification of PQS Effectiveness
- Trend Analysis and Feedback

SOPs & Reports
Periodic Meetings
Management Reviews
ICH Q10 Quality System
Continual Improvement of Process Performance & Product Quality

- Process performance and product quality monitoring system:
 - Well defined systems
 - Process control
 - Identification of improvement areas
 - Corrective action and preventive action (CAPA) system
 - In place and effectiveness evaluated
 - Focus on Continuous Improvement
- Change management system:
 - QA oversight
 - Utilizes science and risk-based assessment
- Management review of process performance and product quality
 - Periodic reviews of performance against metrics
 - Supports continual improvement

ICH Q10 Quality System: Continual Improvement

- Management Review of the Pharmaceutical Quality System
 - Measurement of achievement of QS objectives
 - Assessment of Metrics
- Monitoring of Internal and External Factors impacting the QS
 - Emerging regulations, guidance and quality issues
 - Innovations
 - Changes in business strategies and objectives.
- Outcomes of Management Review and Monitoring
 - (Re)allocation of resources and/or personnel training
 - Timely and effective communication of the results
Compliance and Improvement

<table>
<thead>
<tr>
<th>Element</th>
<th>Compliance is a cost $</th>
<th>Regulation Driven</th>
<th>Improved Compliance</th>
<th>Integrated Compliance</th>
<th>Competitive Advantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality Focus</td>
<td>Testing (QC)</td>
<td>GMPs</td>
<td>Processes and Systems</td>
<td>ICH Q8, 9, 10 Started</td>
<td>ICH Q8,9,10 Embedded</td>
</tr>
<tr>
<td>CAPA</td>
<td>Correction (Reactive)</td>
<td>Corrective Action</td>
<td>Prevent. Action (RCA)</td>
<td>Management Reviews</td>
<td>Drive down COQ</td>
</tr>
<tr>
<td>Continuous Improvement</td>
<td>Absent</td>
<td>Event Driven (Reactive)</td>
<td>QA Focus (Predictive)</td>
<td>Operations Focus</td>
<td>Company Wide - Part of Culture</td>
</tr>
<tr>
<td>Compliance</td>
<td>QA/QCs role - minimal Audits</td>
<td>Compliance / GMP Audits</td>
<td>PQS Systems driven audits</td>
<td>Prepare for Regulatory Audits</td>
<td>Welcome External Feedback</td>
</tr>
<tr>
<td>Knowledge & Training</td>
<td>Basic GMP Training</td>
<td>Knowledge is anecdotal</td>
<td>Systematic Training Evaluated</td>
<td>Knowledge is Documented & Organised</td>
<td>Knowledge is Leveraged</td>
</tr>
</tbody>
</table>

Deviations, Investigations and CAPA

- **CAPA**
- **Compliance**
- **Investigation and Risk Assessment**
- **Deviations**
Manufacturers’ Obligations

- **Oversight:** If a deviation occur, it should be approved in writing by a competent person, with the involvement of the Quality Control Department when appropriate;
- **Release:** Deviations should be resolved before release
- **Stability:** Significant batch deviations may invoke a stability trial
- **PQR:** A review of all significant deviations, their related investigations, and the effectiveness of resultant CAPA taken.
PICs cGMP Expectations

- Any significant deviations are fully recorded and investigated; (GMP 1.3 iv.)
- Product assessment an assessment of deviations from specified procedures; (GMP 1.3 vi.)
- Notes on special problems including details, with signed authorisation for any deviation from the Manufacturing Formula, Processing Instructions and Packaging Instructions (GMP 4.17 (i.)/ GMP 4.18 (h)
- If a deviation occur, it should be approved in writing by a competent person, with the involvement of the Quality Control Department when appropriate. (GMP 5.15)

PICs cGMP Expectations

- Any significant deviation from the expected yield should be recorded and investigated. (GMP 5.39)
- an on-going stability study should be conducted after any significant change or significant deviation to the process or package. (GMP 6.30)
- The Competent Authorities should be informed if a manufacturer is considering action following possibly faulty manufacture, product deterioration, detection of counterfeiting or any other serious quality problems with a product. (GMP 8.8)
Deviation System Key Elements

Event

- Unplanned Deviation
- Planned Deviation
- Investigation & RCA
- Release for Supply
- Batch Impact - SQuIPP
- CAPA

Scope of the Deviation System

Batch(es) specific

applies to significant deviations (planned or unplanned), from standard operating procedures, manufacturing and packaging instructions that may have an adverse effect on product quality or “SQuIPP” (Safety, Quality, Identity, Purity and Potency / Strength).

Not batch specific – a GMP related incident

applies to GMP related incidents, that are not batch specific, which may have occurred during the manufacturing or within a supporting process such as HVAC or water systems etc.
Deviation System also does apply to

- Maintenance and calibration – relating to GMP equipment and services
- Confirmed Out of Specification (OOS) events
- Laboratory procedures and test methods
- Stability failures
- Environmental monitoring and other GMP service excursions from action limits
- Supply chain / raw materials integrity
- Concurrent process validations and cleaning validations
- Phase III clinical trials material manufacture

Deviation System does not apply to

- Audit observations
- Product complaints and adverse events
- Returns and recalls
- Prospective qualifications and validations (these are handled within the Validation Master Plan procedures)
- Clinical Trial materials - Phase I / II manufacture
Healthy Deviation Management Environment

- Staff feel able to raise a deviation without blame
- Deviations are expected – it’s how we manage them that counts
- Good communication and judgment around when to report, or not – seek advice
- Constructive use of investigation and risk assessment tools

Responsibility of QA

- Approval of planned deviations before their implementation
- Classification of the deviation on the basis of Risk
- Overseeing a deviation investigation and review of any investigation / impact assessment report
- Filing completed deviation and incident reports.
- Deciding if a CAPA is required, or not
- Assessing subsequent corrective actions and investigation details
- Reviewing a deviation or incident report at point of release for use or for supply;
- Disposition of the product or material
- Updating and maintaining the Deviation/Event register
Deviation Decisions

- Should all Quality related “Events” be recorded?
- Should all Events be referred to QA?
- When does an event become a GMP deviation?
- How is a “Significant” deviation defined?
- Should all deviations be investigated?
- How do we know its significant if it’s not investigated?
- Should all investigations be documented / risk assessed?
- Should CAPA be applied to all investigation outcomes

Filtration and Escalation Approach

- Start with a GMP related “Quality Event”
- Record on an Event Log
- Assess its potential significance
- Escalate to Deviation, or not
- Commence investigation

** Periodic and Annual Review
Categorise Event Categories for Trending

- Excursion from MBR
- Excursion from SOP
- Excursion from Test Method
- EM Excursion
- Equipment Breakdown
- Facility Breakdown
- Materials / Components
- Other

Checklist to Prompt Preliminary Risk Decision (Potential Risk ?)

1. Likely the event could impact SQuIPP? (Safety, Quality, Identity, Purity, Potency) - Yes No Unsure?
2. Does the event result in an excursion from registered details for this product? - Yes No Unsure?
3. Likely the event could cause physical contamination or cross contamination? - Yes No Unsure?
4. Likely the event could cause loss of identity or traceability? - Yes No Unsure?
5. Likely the event could result in an out of specification result, if tested? - Yes No Unsure?
6. Likely the event could affect product quality or stability in the marketplace? - Yes No Unsure?
7. Is the event related to a GMP non-conformance or outside the “validated state”? - Yes No Unsure?
8. Likely the event has compromised a CPP or a CQA? - Yes No Unsure?
Recording and Evaluating Deviations

Most important to record the deviation quickly and accurately.

Record

- Date / time / process step and stage of processing (pallet #)
- Batch #(s) and Item #(s)
- Equipment, process line and operator(s)
- Sequence of events causing the deviation
- How the deviation was identified
- What immediate action was taken (Containment)

Evaluation is very dependent on good records

- Line and product trend history
- Manufacturing batch records and line logs
- Level of in-process controls

![Recording and Evaluating Deviations](image-url)
Investigations

- SOP on “Investigations, Root Cause Analysis and CAPA”
- SOP serves all investigations not just Deviations/Events
- Investigation plans should be documented on proformas
 - Manufacturing plan
 - Quality Control / Stability plan
- Plans should examine beyond the immediate event – refer to Event logs and other batches/products
- Assign investigation leads – does not have to be QA
Investigation Tips and Tools

- Not all problems need RCA, or they can be solved simply
- Examine the “scene of the crime”
- Involve an SME
- 7 Management Tools, then 7 Statistical Tools
- Tools should be quickly accessible to users
 - 5 whys / brainstorming
 - Root cause mapping / C&E Diagrams
 - Pareto, Kepner Tregoe, DMAIC
- Last resort – FMEA level approach

Investigation Flowchart

1. Manufacturing Plan
2. QC Testing Plan
3. Investigation
 - Summary and RCA
 - Most probable Root Cause(s)
 - High CAPA required
 - QA Risk Assess Main RCs
 - Low – no CAPA needed
 - Medium CAPA ?
4. Invest’n Record
Investigation Tips

- Do it quickly
- Interview Operators
- Root Cause(s) – silver bullet?
 - Ineffective training
 - Human Error
 - Re-write the SOP
- Trigger Event (generally obvious)
- Underlying Condition (often obscure)

Root Cause Analysis /Investigations – some tips

- Investigate “in the moment”, not with hindsight.
- Be systematic and objective – don’t focus on silver bullet
- Consider “Look-back” and “Look-forward”
- “Operator Error - Re-train the operator.”
 - Operator error has at least 7 different causes.
 - In a training system that was possibly flawed, to an SOP that may have generated the error?
Hard Questions in Investigations

- Natural tendency to limit investigations to the batch in question.
- “Look – back” or “Look – forward”.
 - Look back – previous batches / products affected
 - Look Forward – likely to repeat the problem in the future – what’s changed?
- Regulators rightly expect that these potential consequential issues are assessed and documented.
- Not addressing consequential issues is a surefire way to generate a Warning Letter by FDA and criticism from TGA / PICs Inspectors.

Examples

- 1,500 Litres of Vaccine down the drain
- “This batch has glass in it – it shouldn’t be released”
- OOS low potency for biological – repeat the test
- Blow moulded bottle – base uneven
Expanded Investigation
(Look back and Look forward)

- When investigating a deviation it is not enough to simply review the event in isolation. The investigations should:

 - **Look-back** on past batches that may have been compromised by the deviation under review. Examine batch records, test records, other deviation records, and complaint records. Look back should determine whether any quarantine or hold on related batches should occur or whether batches released to market should be recalled.

 - **Look forward** to try and identify whether future batches may be compromised if no CAPA action is taken. This will determine when processing may recommence and what additional controls may be needed.

Deviation Resolution and Release

- **Release**: Deviations should be resolved before release of materials or product.

- **Does this also require implementation of CAPA?**
 - Correction – Yes
 - CAPA – if possible but not always feasible

- **Two point close out for Deviation / CAPA**
 - Deviation Closed
 - CAPA Completed
Timeframes for Processing Deviations and Investigations

- Deviations reports should be raised within 2 - 3 working days of the event occurring ands submitted to Quality Assurance.

- Batch/ SQuIPP related deviations/incidents must be closed out before any implicated batch is released.

- Close out means that a batch correction must be implemented, where warranted.

- All other (non-SquIPP) deviations/incidents should be closed out within 30 calendar days.

Assessing Deviation Significance is related to CPPs, CQAs and CSMs

Critical Process Parameter (CPP)
A process parameter whose variability has an impact on a critical quality attribute and therefore should be monitored or controlled to ensure the process produces the desired quality.

Critical Quality Attribute (CQA)
A physical, chemical, biological or microbiological property or characteristic that should be within an appropriate limit, range, or distribution to ensure the desired product quality.

Critical Starting Material (CSM)
Critical Quality Attribute(s) of a Starting Material
Outcomes of Investigations

- **Clear SQuIPP Impact** – an event or deviation that is likely to have an actual adverse effect on product quality, safety, purity, identity or potency. The deviation is most likely to have an impact on a CPP and/or a CQA.

- **Possible/Probable SQuIPP Impact** – an isolated event or deviation from an approved procedure that may have an unknown effect on a product. The deviations may or may not have an impact on a CPP, but is unlikely to have any impact on a CQA.

- **Clear no SQuIPP Impact** – an event or deviation that has no actual or a potential adverse effect on product quality, safety or efficacy. The deviation is likely to have no impact on a CPP and/or a CQA.

- **Other** – a deviation from GMP or from a procedure that has very low to no potential impact on product quality or a product CQA / CPP).

Two Things to Keep in Perspective

- The holder of a manufacturing authorisation must manufacture medicinal products so as to ensure that they are fit for their intended use, comply with the requirements of the Marketing Authorisation and do not place patients at risk due to inadequate safety, quality or efficacy.

- The level of effort, formality and documentation of the quality risk management process is commensurate with the level of risk.
CAPA and Regulatory Guidance

- Drug GMPs have been backward looking. Pharma Industry would do well to study the Medical Device requirements.

- PIC/s cGMPs are pretty light on in terms of CAPA expectations – inspectors are not.

- ICH Q10 provides a significant step up in expectation but not mandated yet.

- FDA regularly reference lack of effective CAPA in warning letters.

ICH Q10 - Corrective and Preventive Action

- Should have a system for implementing CAPAs resulting from investigations of:
 - Complaints and Recalls
 - Product Rejections and Non-conformances
 - Deviations
 - Audits & Regulatory inspection findings
 - Trends from process performance and product quality monitoring

- “The level of effort and formality of investigation depends on the level of risk”
Essential Elements of a CAPA system

- Risk Assessment
- Correction / Containment
- CAPA Plans & Implementation
- Verification of Effectiveness
- Trend Analysis and Escalation
- SOPs & Standard Forms
- CAPA System Elements
- CAPA Register

Important “CAPA” Definitions

Correction: Correction refers to repair, rework or adjustment and relates to the disposition of an existing non-conformity, defect, or other undesirable situation.

Corrective Action: Action to eliminate the causes of an existing non-conformity, defect or other undesirable situation in order to prevent recurrence.

Preventive Action: Action taken to eliminate the cause of a potential non-conformity, defect, or other undesirable situation in order to prevent occurrence.

Continuous Improvement: Recurring activity to increase the ability to fulfill requirements.
CAPA Processes

- Audit findings
- Audit report
- Rate criticality

- Immediate containment or correction to minimise the problem

- Permanent fix of the problem
- Prevention of recurrence
- Verify effective

- Move from observation (symptom) to root cause of the problem

CAPA Management Flowchart

Marketplace & Complaints + Manufacturing Deviations + Quality System Non-conformities

- Minor and Incidental
- Minor and Incidental
- Significant

Assign to CAPA Team Leader

Risk Assessment

Enter CAPA System

RCA/Failure Investigation

Commitment Track

Document CAPA Plan

Implement CAPA Plan

Verify Implementation

Close CAPA