ENVIRONMENTAL MONITORING
(VIABLES)
Jaap Koster
 Sterility testing and sampling for sterility testing is prone to “false negatives”.

As a result: sterility testing is not the only activity to be considered before defining a batch “sterile”.

ENVIRONMENTAL MONITORING...

- To verify that clean/aseptic areas are routinely operating within their design specifications.
- To ensure that daily operations are not negatively influencing the required cleanliness level.
- To provide continuous data on the performance of clean/aseptic areas.
- Provide an integrated assessment of the performance of man, machine, process, practices etc.

EM is an important feedback loop in the Quality Management System
ENVIRONMENTAL MONITORING INCLUDES...

- **Viable monitoring**
 - Active air sampling
 - Passive air sampling
 - Surfaces
 - Operators

- **Nonviable monitoring (particulates)**
 - Continuous
 - Discontinuous

- **Physical monitoring**
 - Temperature
 - Pressure
 - Humidity
• **Critical areas (Class A)**

Locations were product, critical surfaces or primary packaging components are exposed to the environment,

e.g. personnel, ampoule filling sealing machines, stopper hoppers, LAF units
• Peripheral areas (Class B)

These can be defined as filling rooms within the boundary of the aseptic process area, where product and containers are not exposed to the environment,

e.g. sealed equipment, surfaces or air, storage of autoclaved goods, closed containers
DEFINE ROUTINE MONITORING...

• Associated areas (Class C/D)

Areas adjacent to the manufacturing and filling area:

– Access airlocks
– Changing room airlocks
– Changing rooms
– Material transfer airlocks
– Solution preparation areas
– Dispensing areas
<table>
<thead>
<tr>
<th></th>
<th>Class A</th>
<th>Class B</th>
<th>Class C</th>
<th>Class D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonviable air counts</td>
<td>• Every batch</td>
<td>• Every batch critical areas only</td>
<td>• No guidance recommend weekly, or as required by product need</td>
<td>• No guidance recommend 3-monthly</td>
</tr>
<tr>
<td></td>
<td>• Continuous</td>
<td>• All points frequently</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viable air counts</td>
<td>• Every batch at critical points</td>
<td>• Some points every batch</td>
<td>• No guidance recommend weekly, or as required by product need</td>
<td>• No guidance recommend monthly</td>
</tr>
<tr>
<td>(settle plates</td>
<td></td>
<td>• All points frequently</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and/or volumetric</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>samples)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface counts</td>
<td>• Every batch at critical points</td>
<td>• Frequently (1-2 times per week)</td>
<td>• No guidance recommend weekly, or as required by product need</td>
<td>• No guidance recommend monthly</td>
</tr>
<tr>
<td>(contact plates)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gloves</td>
<td>• All operators working in Class A for each batch</td>
<td>• All operators involved in critical operations for each batch</td>
<td>• Not required</td>
<td>• Not required</td>
</tr>
<tr>
<td></td>
<td>• All operators on a regular basis</td>
<td>• All operators on a regular basis</td>
<td>• Company to set policy based on product need</td>
<td></td>
</tr>
<tr>
<td>Gown monitoring</td>
<td>• During gowning qualification only</td>
<td>• During gowning qualification only</td>
<td>• Not required</td>
<td>• Not required</td>
</tr>
<tr>
<td></td>
<td>• Random (advise)</td>
<td>• Random (advise)</td>
<td>• Company to set policy based on product need</td>
<td></td>
</tr>
<tr>
<td>Pressure differentials</td>
<td>• Continuously</td>
<td>• Continuously</td>
<td>• Continuously</td>
<td>• Continuously</td>
</tr>
<tr>
<td></td>
<td>• Alarms</td>
<td>• Alarms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temp/RH</td>
<td>• Continuously</td>
<td>• Continuously</td>
<td>No requirement (unless required by product need)</td>
<td>No requirement</td>
</tr>
</tbody>
</table>

© Pharmaceutical Consultancy Services, All rights reserved.
What is required?

• Quantitative Air samples
• Qualitative Air samples (settle plates)
• Surface Samples
• Currently, all methods are growth based, although some progress is being made with rapid methods.
QUANTITATIVE AIR SAMPLING

Driven by a mechanical “ventilator” a known amount of air is led over a agar-plate, some examples given:

- Sieve impactors
- Slit-to agar (STA) Air Samplers
- Surface vacuum samplers
- Centrifugal impactors
- Filtration
- Liquid Impingement
QUANTITATIVE AIR SAMPLERS
CENTRIFUGAL IMPACTORS

RCS High Flow (Biotest)
EM METHODS: SETTLE PLATES

- bioburden after exposure of a certain time (time must be validated)
- glove printing
- Possible issue: dry-out of media
SURFACE SAMPLING METHODOLOGIES

- Contact plates or slides
- Flexible films (petri films)
- Swabs
- Surface rinse method
EM METHODS, CONTACT PLATE

- bioburden on a surface (55mm plate)
- cleanroom surface
- personnel contact print
- open plate, contact and clean
SURFACE MONITORING
CONTACT PLATES OR SLIDES

- Easy to use
- Neutralising agents may be included in the media
- Strips have some flexibility
- Media residues need to be removed.
SURFACE MONITORING SWABS

• Useful for equipment and irregular areas
• From cotton swabs, at best recoveries are 20%
• Calcium alginate varieties can be dissolved and plated.
ENVIRONMENTAL MONITORING SPECIFICATION FOR VIABLE COUNTS

Recommended limits for microbiological monitoring of clean areas during operation.

Recommended limits for microbial contamination (a)

Notes
(a) These are average values.
(b) Individual settle plates may be exposed for less than 4 hours

<table>
<thead>
<tr>
<th>Grade</th>
<th>Air sample cfu/m 3</th>
<th>settle plates (diam. 90 mm), cfu/4 hours b</th>
<th>contact plates (diam. 55 mm), cfu/plate</th>
<th>glove print 5 fingers cfu/glove</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>< 1</td>
<td>< 1</td>
<td>< 1</td>
<td>< 1</td>
</tr>
<tr>
<td>B</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>C</td>
<td>100</td>
<td>50</td>
<td>25</td>
<td>-</td>
</tr>
<tr>
<td>D</td>
<td>200</td>
<td>100</td>
<td>50</td>
<td>-</td>
</tr>
</tbody>
</table>
ENVIRONMENTAL MONITORING – IDENTIFICATION OF ISOLATES

- 90% of all clean room isolates will be identified as (in order of prevalence):
 - *Staphylococcus* (human)
 - *Micrococcus* (human, dust, air)
 - *Coryneforms* (human)
 - *Bacillus* (survivors of disinfection)
 - *Yeast and moulds* (human, dust, air)
 - *Streptococcus, propionibacterium* (human)
ENVIRONMENTAL MONITORING – IDENTIFICATION OF ISOLATES

• How far to go?
• Initially at start up, characterise all isolates to at least genus level
• However, be pragmatic – don’t identify every colony; select and group on the basis of colonial morphology
• There should not be more than 10 or, at the most, 15 different types
ENVIRONMENTAL MONITORING – IDENTIFICATION OF ISOLATES

• How far to go?
• Thereafter, use colony morphology to monitor changes in the cleanroom flora
• Identify any newcomers to at least genus level
• Evaluate the significance of the newcomer!
• Is it a transient or does it represent an issue?
<table>
<thead>
<tr>
<th>Bacterium</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudomonas spp</td>
<td>disinfection, water</td>
</tr>
<tr>
<td>Enterobacteriaceae spp</td>
<td>water/training</td>
</tr>
<tr>
<td>Staphylococcus</td>
<td>personnel</td>
</tr>
<tr>
<td>Micrococcus</td>
<td>personnel</td>
</tr>
<tr>
<td>Corynebacterium</td>
<td>personnel</td>
</tr>
<tr>
<td>Streptococcus (human)</td>
<td>personnel training</td>
</tr>
<tr>
<td>Bacillus</td>
<td>sterilisation/disinfection</td>
</tr>
</tbody>
</table>
ENVIROMENTAL MONITORING – IDENTIFICATION OF ISOLATES

• How far to go?

• Media fill failures establish a link with an operator

• Sterility failures to assure (most probable) cause of failure
 – Be aware that the likelihood to miss a bug with EM, is quite high. Meaning that it has happened quite often (in my work-experience) that EM is ok, while batch failed in sterility
ENVIRONMENTAL MONITORING FOR PRODUCT RELEASE

- Annex 1 Guide to GMP
- FDA Aseptic Processing Guide
- EM data is reviewed prior to releasing the batch
- It is part of the Sterility Assurance Programme
Determination of typical house flora is a requirement
House flora profile continuously under review (annually!)
House flora used to validate disinfectants, sterility test and medium fertility testing
House flora should be based on the most typically recovered organisms from the site
Representatives of each microbial type should be selected (e.g. Gram +ve, Gram –ve, spore former, mould, yeast)
ENVIRONMENTAL MONITORING TREND REPORTING

- It is an essential control tool
- Ideally product contamination can be prevented by timely intervention
- OOT (Out of Trend) to be considered
Example trend graph class B area

- 5 cfu/plate = alert limit
- 10 cfu/plate = action limit
Example trend graph house flora
ENVIRONMENTAL MONITORING
OOL INVESTIGATION/ACTIONS

• Evaluation of the impact on the product
• Typical scenarios:
 – Operator finger dabs 6 cfu left hand (Class B: 5 is Limit)
 – 6 cfu on settle plat at the point of fill (Class A: <1 is Limit)
 – 20 cfu on a contact plate from floor of Class B zone!
 – 1 cfu/m³ Class A zone
ENVIRONMENTAL MONITORING SPECIFICATION FOR VIVABLE COUNTS

Recommended limits for microbiological monitoring of clean areas during operation.

Recommended limits for microbial contamination (a)

Notes
(a) These are average values.
(b) Individual settle plates may be exposed for less than 4 hours

<table>
<thead>
<tr>
<th>Grade</th>
<th>Air sample cfu/m 3</th>
<th>settle plates (diam. 90 mm), cfu/4 hours (b)</th>
<th>contact plates (diam. 55 mm), cfu/plate</th>
<th>glove print 5 fingers cfu/glove</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>< 1</td>
<td>< 1</td>
<td>< 1</td>
<td>< 1</td>
</tr>
<tr>
<td>B</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>C</td>
<td>100</td>
<td>50</td>
<td>25</td>
<td>-</td>
</tr>
<tr>
<td>D</td>
<td>200</td>
<td>100</td>
<td>50</td>
<td>-</td>
</tr>
</tbody>
</table>
ENVIROMENTAL MONITORING OOL INVESTIGATION/ACTIONS

• Above the Evaluation on product impact:

 – The cause needs to be identified

 – A corrective action plan must be made and implemented to prevent re-occurrence
• Expectations for when an action limit is exceeded:

– It does not necessarily mean you have to reject the batch!
– It does mean that you will have to justify release on the basis of a thorough OOL investigation
When an action limit is exceeded:

- **Do NOT** perform additional cleaning and monitoring, without proper justification
- **Do** review Room Air and HVAC system
- **Do** review data for facility surfaces
- **Do** review data for personnel gowning
- **Do** (deep investigation)
- **Do** evaluate the impact on the product
IN CONCLUSION

• EM positions and frequency to be determined by thorough analysis (SME’s) of room/room-activity, position of HVAC in/outlets, doors, etc., as well as by guidelines.
• Consider at all time that EM is prone to “false negatives”
• EM is an important attribute for SAL, however many others are as well.
MINDMAPPING

- TESTING
- AREA QUALIF
- OPERATORS QUALIF
- MONITORING T/RH/dP
- MONITORING NON-VIABLE
- MONITORING VIABLES
- DEVATIONS
- PROCESS PERFORMANCE
THANK YOU FOR YOUR ATTENTION