Plenary Session 2:
Freeze-Stable Vaccines

Next-Generation Vaccine Delivery Technology Meeting
Geneva, Switzerland

Debra Kristensen
Group Leader,
Vaccine and Pharmaceutical Technologies,
PATH
(dkriste@path.org)

18 February 2014
Freeze-protection technology: For aluminum adjuvant-containing vaccines

Technology Description:
Inclusion of a safe and commonly used excipient in the vaccine formulation (e.g., propylene glycol, polyethylene glycol 300, or glycerin).
Freeze protection: Mechanism of action

Overview:

• At low concentrations (5 to 10 percent), the excipients do not necessarily prevent freezing but still prevent freeze damage by inhibiting agglomeration of particles—even following exposure to multiple freeze-thaw cycles at temperatures as low as -80°C.

• Freeze-stable formulations validated by vaccine producers in laboratory and preclinical studies with hepatitis B (HepB), diphtheria-tetanus-acellular pertussis, diphtheria-tetanus-whole cell pertussis (DTwP) and DTwP-HepB-Hib vaccines.
Freeze protection: Hepatitis B vaccine

Effect of 5% to 50% propylene glycol on HepB vaccine immunogenicity (in mice) after three cycles of exposure to -10°C to 4°C (at least 18 hours at each temperature) or stored at 4°C as a control.

Freeze protection: Benefits and challenges

Benefits:
• For vaccine manufacturers:
  – Enhances product features and competitiveness; reduces risk of recalls.
  – Cost for key excipients is approximately $0.001 per dose.
• Benefits to vaccine users:
  – Improves vaccine effectiveness, reduces wastage and cost, and may enable the use of ice and domestic refrigerators.

Challenges:
• Needs to be integrated into vaccines during product development.
• Lack of incentives for vaccine producers to formulate freeze-stable vaccines.
Freeze protection: Opportunities and way forward

Global Public Health Challenge:
- Strong evidence that freeze-sensitive vaccines are exposed to freezing temperatures during storage and transport.

Technology Availability:
- PATH has placed the freeze-protection technology in the public domain for use by all vaccine producers.
- All new vaccines containing aluminum, including combination vaccines (e.g., with IPV), could benefit.
- Incentives required for vaccine producers/developers to incorporate the technology.