Plenary Session 2: Landscape
Mucosal Vaccine Delivery

Next-Generation Vaccine Delivery Technology Meeting
Geneva, Switzerland

Name: David J.M. Lewis MD
Email: d.j.lewis@surrey.ac.uk
Title: Professor of Clinical Vaccine Immunology
Date: February 18, 2014

“Most pathogens access the body through the mucosal membranes. Therefore, effective vaccines that protect at these sites are much needed”.

www.nature.com/reviews/immunol
doi:10.1038/nri3251
Mucosal Delivery: Oral, rectal, nasal, vaginal, sublingual

Live versus subunit:

- **Live organisms**: mucosal portal of *infection*
 - **Success**: polio, rota [oral]
 - LAIV, (measles) [airways]
 - **Moderate**: Salmonella, cholera, (shigella [oral])
 - Multivalent live disappointing
 - **Attenuation<>immunity**
 - viruses more established?
- **Subunit / killed**: route of *immunisation*
 - Non-immunogenic or weak
 - Multiple doses, short lived (oral cholera, ETEC)
 - Adjuvants: toxicity / ineffective (Ivag)
Mucosal IgA: Necessary and effective? (in humans)

Overview:

- Dogma that mucosal delivery will induce protective SIgA whereas IM will not:
 - Alum adjuvanted Gardasil high protection against cervical basal cell (openly exposed) HPV infection
 - IgG can protect mucosal surfaces – no IgA
 - eIPV can prevent mucosal polio transmission via IgG
 - IM Shigella/Salmonella conjugates
 - Confusing story over HIV STEP trial correlation with serum IgA, impact of gut adeno CMI?
- Series of failed Phase 1 trials of mucosal prime- parenteral boost
Correlates: Models don’t predict mucosal responses

Description:

• Small animals do not always predict
 • Rabbit noses / vaginas respond to anything. Anatomy different
 • Primates (human & non-human) needed ?? Especially reactogenicity?
• Industrialized country citizens do not predict globally

Status:

• Correlates of protection / reactogenicity may differ when localised mucosal immunity / reactions in place
 • LAIV – serum HAI??
 • How to measure and model ??
Mucosal vaccines: Benefits and Challenges

Benefits:
- Needle-free: HIV/HBV/HCV
- *Maybe* SIgA induced??????

Challenges:
- Tropical Barriers
- Weak, short lived responses
 - failure to mucosal prime
- Mucosal adjuvants / toxicity / attenuation / high antigen doses
- Clean Water Supply
- Delivery devices / buffers / 2-stage immunisations / days→ EPI
Mucosal vaccines: Opportunities + Way Forward

Global Public Health Challenge:

• Most infections via mucosal surface
 • HIV / TB / STDs / pneumonia / gastroenteritis / meningitis

Technology Availability:

• Live viral vaccines – available and potentially adaptable to mucosal delivery
• Cheap, reliable devices to convert existing syringe/needle combination for mucosal delivery, integrate into EPI
• Better understanding of mucosal immunity – antigens – mIgG – adjuvants – duration – magnitude – targeting
• Multivalent parenteral subunit vaccines, adjuvanted, conjugates? GMMAs? – safe injection devices?
• Expectations management for what mucosal delivery offers